Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1992 Feb;174(3):930–934. doi: 10.1128/jb.174.3.930-934.1992

Identification and sequences of the lipopolysaccharide core biosynthetic genes rfaQ, rfaP, and rfaG of Escherichia coli K-12.

C T Parker 1, E Pradel 1, C A Schnaitman 1
PMCID: PMC206172  PMID: 1732225

Abstract

The rfa locus of Escherichia coli K-12 includes a block of about 10 closely spaced genes transcribed in the same direction which are involved in synthesis and modification of the hexose region of the lipopolysaccharide core. We have sequenced the first three genes in this block. The function of the first of these genes is unknown, but we have designated it rfaQ on the basis of its location and similarity to other rfa genes. Complementation of Salmonella typhimurium rfa mutants with E. coli rfa restriction fragments indicated that the second and third genes in the block were rfaG and rfaP. The deduced sizes of the RfaQ, RfaG, and RfaP proteins are 36,298, 42,284, and 30,872 Da, respectively, and the proteins are basic and lack extensive hydrophobic domains. RfaQ shares regions of homology with proteins RfaC and RfaF, which are involved in synthesis of the heptose region of the core. Proteins RfaB, RfaG, and RfaK share a region of homology, which suggests that they belong to a second family of Rfa proteins which are thought to be hexose transferases.

Full text

PDF
930

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Austin E. A., Graves J. F., Hite L. A., Parker C. T., Schnaitman C. A. Genetic analysis of lipopolysaccharide core biosynthesis by Escherichia coli K-12: insertion mutagenesis of the rfa locus. J Bacteriol. 1990 Sep;172(9):5312–5325. doi: 10.1128/jb.172.9.5312-5325.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Clementz T., Raetz C. R. A gene coding for 3-deoxy-D-manno-octulosonic-acid transferase in Escherichia coli. Identification, mapping, cloning, and sequencing. J Biol Chem. 1991 May 25;266(15):9687–9696. [PubMed] [Google Scholar]
  3. Creeger E. S., Rothfield L. I. Cloning of genes for bacterial glycosyltransferases. I. Selection of hybrid plasmids carrying genes for two glucosyltransferases. J Biol Chem. 1979 Feb 10;254(3):804–810. [PubMed] [Google Scholar]
  4. Helander I. M., Vaara M., Sukupolvi S., Rhen M., Saarela S., Zähringer U., Mäkelä P. H. rfaP mutants of Salmonella typhimurium. Eur J Biochem. 1989 Nov 20;185(3):541–546. doi: 10.1111/j.1432-1033.1989.tb15147.x. [DOI] [PubMed] [Google Scholar]
  5. Hämmerling G., Lehmann V., Lüderitz O. Structural studies on the heptose region of Salmonella lipopolysaccharides. Eur J Biochem. 1973 Oct 18;38(3):453–458. doi: 10.1111/j.1432-1033.1973.tb03079.x. [DOI] [PubMed] [Google Scholar]
  6. Manoil C. Analysis of protein localization by use of gene fusions with complementary properties. J Bacteriol. 1990 Feb;172(2):1035–1042. doi: 10.1128/jb.172.2.1035-1042.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Müller E., Hinckley A., Rothfield L. Studies of phospholipid-requiring bacterial enzymes. 3. Purification and properties of uridine diphosphate glucose:lipopolysaccharide glucosyltransferase I. J Biol Chem. 1972 Apr 25;247(8):2614–2622. [PubMed] [Google Scholar]
  8. Pradel E., Schnaitman C. A. Effect of rfaH (sfrB) and temperature on expression of rfa genes of Escherichia coli K-12. J Bacteriol. 1991 Oct;173(20):6428–6431. doi: 10.1128/jb.173.20.6428-6431.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Schnaitman C. A., Parker C. T., Klena J. D., Pradel E. L., Pearson N. B., Sanderson K. E., MacClachlan P. R. Physical maps of the rfa loci of Escherichia coli K-12 and Salmonella typhimurium. J Bacteriol. 1991 Dec;173(23):7410–7411. doi: 10.1128/jb.173.23.7410-7411.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES