Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1992 Feb;174(3):1013–1019. doi: 10.1128/jb.174.3.1013-1019.1992

Sugar-glycerol cofermentations in lactobacilli: the fate of lactate.

M Veiga da Cunha 1, M A Foster 1
PMCID: PMC206182  PMID: 1732191

Abstract

The simultaneous fermentation of glycerol and sugar by lactobacillus brevis B22 and Lactobacillus buchneri B190 increases both the growth rate and total growth. The reduction of glycerol to 1,3-propanediol by the lactobacilli was found to influence the metabolism of the sugar cofermented by channelling some of the intermediate metabolites (e.g., pyruvate) towards NADH-producing (rather than NADH-consuming) reactions. Ultimately, the absolute requirement for NADH to prevent the accumulation of 3-hydroxypropionaldehyde leads to a novel lactate-glycerol cofermentation. As a result, additional ATP can be made not only by (i) converting pyruvate to acetate via acetyl phosphate rather than to the ethanol usually found and (ii) oxidizing part of the intermediate pyruvate to acetate instead of the usual reduction to lactate but also by (iii) reoxidation of accumulated lactate to acetate via pyruvate. The conversion of lactate to pyruvate is probably catalyzed by NAD-independent lactate dehydrogenases that are found only in the cultures oxidizing lactate and producing 1,3-propanediol, suggesting a correlation between the expression of these enzymes and a raised intracellular NAD/NADH ratio. The enzymes metabolizing glycerol (glycerol dehydratase and 1,3-propanediol dehydrogenase) were expressed in concert without necessary induction by added glycerol, although their expression may also be influenced by the intracellular NAD/NADH ratio set by the different carbohydrates fermented.

Full text

PDF
1013

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ARMSTRONG J. M. THE MOLAR EXTINCTION COEFFICIENT OF 2,6-DICHLOROPHENOL INDOPHENOL. Biochim Biophys Acta. 1964 Apr 4;86:194–197. doi: 10.1016/0304-4165(64)90180-1. [DOI] [PubMed] [Google Scholar]
  2. CHRISTENSEN M. D., ALBURY M. N., PEDERSON C. S. Variation in the acetic acid-lactic acid ratio among the lactic acid bacteria. Appl Microbiol. 1958 Sep;6(5):316–318. doi: 10.1128/am.6.5.316-318.1958. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Doelle H. W. Nicotinamide adenine dinucleotide-dependent and nicotinamide adenine dinucleotide-independent lactate dehydrogenases in homofermentative and heterofermentative lactic acid bacteria. J Bacteriol. 1971 Dec;108(3):1284–1289. doi: 10.1128/jb.108.3.1284-1289.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Forage R. G., Foster M. A. Resolution of the coenzyme B-12-dependent dehydratases of Klebsiella sp. and Citrobacter freundii. Biochim Biophys Acta. 1979 Aug 15;569(2):249–258. doi: 10.1016/0005-2744(79)90060-3. [DOI] [PubMed] [Google Scholar]
  5. Garvie E. I. Bacterial lactate dehydrogenases. Microbiol Rev. 1980 Mar;44(1):106–139. doi: 10.1128/mr.44.1.106-139.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kandler O. Carbohydrate metabolism in lactic acid bacteria. Antonie Van Leeuwenhoek. 1983 Sep;49(3):209–224. doi: 10.1007/BF00399499. [DOI] [PubMed] [Google Scholar]
  7. Murphy M. G., O'Connor L., Walsh D., Condon S. Oxygen dependent lactate utilization by Lactobacillus plantarum. Arch Microbiol. 1985 Feb;141(1):75–79. doi: 10.1007/BF00446743. [DOI] [PubMed] [Google Scholar]
  8. SMILEY K. L., SOBOLOV M. A cobamide-requiring glycerol dehydrase from an acrolein-forming Lactobacillus. Arch Biochem Biophys. 1962 Jun;97:538–543. doi: 10.1016/0003-9861(62)90118-2. [DOI] [PubMed] [Google Scholar]
  9. SOBOLOV M., SMILEY K. L. Metabolism of glycerol by an acrolein-forming lactobacillus. J Bacteriol. 1960 Feb;79:261–266. doi: 10.1128/jb.79.2.261-266.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Sedewitz B., Schleifer K. H., Götz F. Physiological role of pyruvate oxidase in the aerobic metabolism of Lactobacillus plantarum. J Bacteriol. 1984 Oct;160(1):462–465. doi: 10.1128/jb.160.1.462-465.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Sedewitz B., Schleifer K. H., Götz F. Purification and biochemical characterization of pyruvate oxidase from Lactobacillus plantarum. J Bacteriol. 1984 Oct;160(1):273–278. doi: 10.1128/jb.160.1.273-278.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Talarico T. L., Axelsson L. T., Novotny J., Fiuzat M., Dobrogosz W. J. Utilization of Glycerol as a Hydrogen Acceptor by Lactobacillus reuteri: Purification of 1,3-Propanediol:NAD Oxidoreductase. Appl Environ Microbiol. 1990 Apr;56(4):943–948. doi: 10.1128/aem.56.4.943-948.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Talarico T. L., Dobrogosz W. J. Chemical characterization of an antimicrobial substance produced by Lactobacillus reuteri. Antimicrob Agents Chemother. 1989 May;33(5):674–679. doi: 10.1128/aac.33.5.674. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Talarico T. L., Dobrogosz W. J. Purification and Characterization of Glycerol Dehydratase from Lactobacillus reuteri. Appl Environ Microbiol. 1990 Apr;56(4):1195–1197. doi: 10.1128/aem.56.4.1195-1197.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Tseng C. P., Montville T. J. Enzyme Activities Affecting End Product Distribution by Lactobacillus plantarum in Response to Changes in pH and O(2). Appl Environ Microbiol. 1990 Sep;56(9):2761–2763. doi: 10.1128/aem.56.9.2761-2763.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. WALKER J. R. Pyruvate metabolism in Lactobacillus brevis. Biochem J. 1959 May;72(1):188–192. doi: 10.1042/bj0720188. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Wardi A. H., Allen W. S., Varma R. A simple method for the detection and quantitative determination of hexuronic acids and pentoses. Anal Biochem. 1974 Jan;57(1):268–273. doi: 10.1016/0003-2697(74)90072-4. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES