Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1992 Jul;174(14):4606–4613. doi: 10.1128/jb.174.14.4606-4613.1992

Characterization of the Streptomyces clavuligerus argC gene encoding N-acetylglutamyl-phosphate reductase: expression in Streptomyces lividans and effect on clavulanic acid production.

M Ludovice 1, J F Martin 1, P Carrachas 1, P Liras 1
PMCID: PMC206255  PMID: 1339424

Abstract

The argC gene of Streptomyces clavuligerus encoding N-acetylglutamyl-phosphate reductase (AGPR) has been cloned by complementation of argC mutants Streptomyces lividans 1674 and Escherichia coli XC33. The gene is contained in an open reading frame of 1,023 nucleotides which encodes a protein of 340 amino acids with a deduced molecular mass of 35,224 Da. The argC gene is linked to argE, as shown by complementation of argE mutants of E. coli. Expression of argC from cloned DNA fragments carrying the gene leads to high levels of AGPR in wild-type S. lividans and in the argC mutant S. lividans 1674. Formation of AGPR is repressed by addition of arginine to the culture medium. The protein encoded by the argC gene is very similar to the AGPRs of Streptomyces coelicolor, Bacillus subtilis, and E. coli and, to a lesser degree, to the homologous enzymes of Saccharomyces cerevisiae and Anabaena spp. A conserved PGCYPT domain present in all the AGPR sequences suggests that this may be the active center of the protein. Transformation of S. clavuligerus 328, an argC auxotroph deficient in clavulanic acid biosynthesis, with plasmid pULML30, carrying the cloned argC gene, restored both prototrophy and antibiotic production.

Full text

PDF
4606

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boonchird C., Messenguy F., Dubois E. Characterization of the yeast ARG5,6 gene: determination of the nucleotide sequence, analysis of the control region and of ARG5,6 transcript. Mol Gen Genet. 1991 Apr;226(1-2):154–166. doi: 10.1007/BF00273599. [DOI] [PubMed] [Google Scholar]
  2. Coque J. J., Martín J. F., Calzada J. G., Liras P. The cephamycin biosynthetic genes pcbAB, encoding a large multidomain peptide synthetase, and pcbC of Nocardia lactamdurans are clustered together in an organization different from the same genes in Acremonium chrysogenum and Penicillium chrysogenum. Mol Microbiol. 1991 May;5(5):1125–1133. doi: 10.1111/j.1365-2958.1991.tb01885.x. [DOI] [PubMed] [Google Scholar]
  3. Crabeel M., Charlier D., Cunin R., Glansdorff N. Cloning and endonuclease restriction analysis of argF and of the control region of the argECBH bipolar operon in Escherichia coli. Gene. 1979 Mar;5(3):207–231. doi: 10.1016/0378-1119(79)90079-9. [DOI] [PubMed] [Google Scholar]
  4. Cunin R., Glansdorff N., Piérard A., Stalon V. Biosynthesis and metabolism of arginine in bacteria. Microbiol Rev. 1986 Sep;50(3):314–352. doi: 10.1128/mr.50.3.314-352.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Daza A., Martín J. F., Vigal T., Gil J. A. Analysis of the promoter region of saf, a Streptomyces griseus gene that increases production of extracellular enzymes. Gene. 1991 Dec 1;108(1):63–71. doi: 10.1016/0378-1119(91)90488-w. [DOI] [PubMed] [Google Scholar]
  6. Glansdorf N., Sand G. Coordination of enzyme synthesis in the arginine pathway of Escherichia coli K-12. Biochim Biophys Acta. 1965 Oct 11;108(2):308–311. doi: 10.1016/0005-2787(65)90016-x. [DOI] [PubMed] [Google Scholar]
  7. Haas D., Holloway B. W., Schamböck A., Leisinger T. The genetic organization of arginine biosynthesis in Pseudomonas aeruginosa. Mol Gen Genet. 1977 Jul 7;154(1):7–22. doi: 10.1007/BF00265571. [DOI] [PubMed] [Google Scholar]
  8. Haziza C., Stragier P., Patte J. C. Nucleotide sequence of the asd gene of Escherichia coli: absence of a typical attenuation signal. EMBO J. 1982;1(3):379–384. doi: 10.1002/j.1460-2075.1982.tb01178.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hornemann U., Eggert J. H. Utilization of the intact carbamoyl group of L-(NH2CO-13C,15N) citrulline in mitomycin biosynthesis by Streptomyces verticillatus. J Antibiot (Tokyo) 1975 Oct;28(10):841–843. doi: 10.7164/antibiotics.28.841. [DOI] [PubMed] [Google Scholar]
  10. Jaurin B., Cohen S. N. Streptomyces contain Escherichia coli-type A + T-rich promoters having novel structural features. Gene. 1985;39(2-3):191–201. doi: 10.1016/0378-1119(85)90313-0. [DOI] [PubMed] [Google Scholar]
  11. Kieser T., Melton R. E. Plasmid pIJ699, a multi-copy positive-selection vector for Streptomyces. Gene. 1988 May 15;65(1):83–91. doi: 10.1016/0378-1119(88)90419-2. [DOI] [PubMed] [Google Scholar]
  12. Martín M. F., Liras P. Organization and expression of genes involved in the biosynthesis of antibiotics and other secondary metabolites. Annu Rev Microbiol. 1989;43:173–206. doi: 10.1146/annurev.mi.43.100189.001133. [DOI] [PubMed] [Google Scholar]
  13. Mountain A., McChesney J., Smith M. C., Baumberg S. Gene sequence encoding early enzymes of arginine synthesis within a cluster in Bacillus subtilis, as revealed by cloning in Escherichia coli. J Bacteriol. 1986 Mar;165(3):1026–1028. doi: 10.1128/jb.165.3.1026-1028.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Parsot C., Boyen A., Cohen G. N., Glansdorff N. Nucleotide sequence of Escherichia coli argB and argC genes: comparison of N-acetylglutamate kinase and N-acetylglutamate-gamma-semialdehyde dehydrogenase with homologous and analogous enzymes. Gene. 1988 Sep 7;68(2):275–283. doi: 10.1016/0378-1119(88)90030-3. [DOI] [PubMed] [Google Scholar]
  15. Picard F. J., Dillon J. R. Cloning and organization of seven arginine biosynthesis genes from Neisseria gonorrhoeae. J Bacteriol. 1989 Mar;171(3):1644–1651. doi: 10.1128/jb.171.3.1644-1651.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Romero J., Liras P., Martín J. F. Utilization of ornithine and arginine as specific precursors of clavulanic acid. Appl Environ Microbiol. 1986 Oct;52(4):892–897. doi: 10.1128/aem.52.4.892-897.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Smith M. C., Czaplewski L., North A. K., Baumberg S., Stockley P. G. Sequences required for regulation of arginine biosynthesis promoters are conserved between Bacillus subtilis and Escherichia coli. Mol Microbiol. 1989 Jan;3(1):23–28. doi: 10.1111/j.1365-2958.1989.tb00099.x. [DOI] [PubMed] [Google Scholar]
  18. Smith M. C., Mountain A., Baumberg S. Nucleotide sequence of the Bacillus subtilis argC gene encoding N-acetylglutamate-gamma-semialdehyde dehydrogenase. Nucleic Acids Res. 1990 Aug 11;18(15):4595–4595. doi: 10.1093/nar/18.15.4595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Walker J. B. Pathways of biosynthesis of the guanidinated inositol moieties of streptomycin and bluensomycin. Methods Enzymol. 1975;43:429–433. doi: 10.1016/0076-6879(75)43097-x. [DOI] [PubMed] [Google Scholar]
  20. Wierenga R. K., Terpstra P., Hol W. G. Prediction of the occurrence of the ADP-binding beta alpha beta-fold in proteins, using an amino acid sequence fingerprint. J Mol Biol. 1986 Jan 5;187(1):101–107. doi: 10.1016/0022-2836(86)90409-2. [DOI] [PubMed] [Google Scholar]
  21. Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES