Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1992 Jul;174(14):4718–4726. doi: 10.1128/jb.174.14.4718-4726.1992

Chlorosis induced by nutrient deprivation in Synechococcus sp. strain PCC 7942: not all bleaching is the same.

J L Collier 1, A R Grossman 1
PMCID: PMC206268  PMID: 1624459

Abstract

Cell coloration changes from normal blue-green to yellow or yellow-green when the cyanobacterium Synechococcus sp. strain PCC 7942 is deprived of an essential nutrient. We found that this bleaching process (chlorosis) in cells deprived of sulfur (S) was similar to that in cells deprived of nitrogen (N), but that cells deprived of phosphorus (P) bleached differently. Cells divided once after N deprivation, twice after S deprivation, and four times after P deprivation. Chlorophyll (Chl) accumulation stopped almost immediately upon N or S deprivation but continued for several hours after P deprivation. There was no net Chl degradation during N, S, or P deprivation, although cellular Chl content decreased because cell division continued after Chl accumulation ceased. Levels of the light-harvesting phycobiliproteins declined dramatically in a rapid response to N or S deprivation, reflecting an ordered breakdown of the phycobilisomes (PBS). In contrast, P-deprived cultures continued to accumulate PBS for several hours. Whole PBS were not extensively degraded in P-deprived cells, although the PBS contents of P-deprived cells declined because of continued cell division after PBS accumulation ceased. Levels of mRNAs encoding PBS polypeptides declined by 90 to 95% in N- or S-deprived cells and by 80 to 85% in P-deprived cells. These changes in both the synthesis and stability of PBS resulted in a 90% decline in the PC/Chl ratio of N- or S-deprived cells and a 40% decline in the PC/Chl ratio of P-deprived cells. Therefore, although bleaching appears to be a general response to nutrient deprivation, it is not the same under all nutrient-limited conditions and is probably composed of independently controlled subprocesses.

Full text

PDF

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen M. M. Cyanobacterial cell inclusions. Annu Rev Microbiol. 1984;38:1–25. doi: 10.1146/annurev.mi.38.100184.000245. [DOI] [PubMed] [Google Scholar]
  2. Allen M. M., Smith A. J. Nitrogen chlorosis in blue-green algae. Arch Mikrobiol. 1969;69(2):114–120. doi: 10.1007/BF00409755. [DOI] [PubMed] [Google Scholar]
  3. Anderson L. K., Rayner M. C., Sweet R. M., Eiserling F. A. Regulation of Nostoc sp. phycobilisome structure by light and temperature. J Bacteriol. 1983 Sep;155(3):1407–1416. doi: 10.1128/jb.155.3.1407-1416.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Arnon D. I., McSwain B. D., Tsujimoto H. Y., Wada K. Photochemical activity and components of membrane preparations from blue-green algae. I. Coexistence of two photosystems in relation to chlorophyll a and removal of phycocyanin. Biochim Biophys Acta. 1974 Aug 23;357(2):231–245. doi: 10.1016/0005-2728(74)90063-2. [DOI] [PubMed] [Google Scholar]
  5. Gantt E., Lipschultz C. A., Grabowski J., Zimmerman B. K. Phycobilisomes from blue-green and red algae: isolation criteria and dissociation characteristics. Plant Physiol. 1979 Apr;63(4):615–620. doi: 10.1104/pp.63.4.615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Glazer A. N. Light harvesting by phycobilisomes. Annu Rev Biophys Biophys Chem. 1985;14:47–77. doi: 10.1146/annurev.bb.14.060185.000403. [DOI] [PubMed] [Google Scholar]
  7. Glazer A. N., Lundell D. J., Yamanaka G., Williams R. C. The structure of a "simple" phycobilisome. Ann Microbiol (Paris) 1983 Jul-Aug;134B(1):159–180. doi: 10.1016/s0769-2609(83)80103-3. [DOI] [PubMed] [Google Scholar]
  8. Golden S. S., Nalty M. S., Cho D. S. Genetic relationship of two highly studied Synechococcus strains designated Anacystis nidulans. J Bacteriol. 1989 Jan;171(1):24–29. doi: 10.1128/jb.171.1.24-29.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gombos Z., Vigh L. Primary Role of the Cytoplasmic Membrane in Thermal Acclimation Evidenced in Nitrate-Starved Cells of the Blue-Green Alga, Anacystis nidulans. Plant Physiol. 1986 Feb;80(2):415–419. doi: 10.1104/pp.80.2.415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Green L. S., Grossman A. R. Changes in sulfate transport characteristics and protein composition of Anacystis nidulans R2 during sulfur deprivation. J Bacteriol. 1988 Feb;170(2):583–587. doi: 10.1128/jb.170.2.583-587.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Grillo J. F., Gibson J. Regulation of phosphate accumulation in the unicellular cyanobacterium Synechococcus. J Bacteriol. 1979 Nov;140(2):508–517. doi: 10.1128/jb.140.2.508-517.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Houmard J., Mazel D., Moguet C., Bryant D. A., Tandeau de Marsac N. Organization and nucleotide sequence of genes encoding core components of the phycobilisomes from Synechococcus 6301. Mol Gen Genet. 1986 Dec;205(3):404–410. doi: 10.1007/BF00338074. [DOI] [PubMed] [Google Scholar]
  13. Ihlenfeldt M. J., Gibson J. Phosphate utilization and alkaline phosphatase activity in Anacystis nidulans (Synechococcus). Arch Microbiol. 1975;102(1):23–28. doi: 10.1007/BF00428340. [DOI] [PubMed] [Google Scholar]
  14. Lau R. H., Alvarado-Urbina G., Lau P. C. Phycocyanin alpha-subunit gene of Anacystis nidulans R2: cloning, nucleotide sequencing and expression in Escherichia coli. Gene. 1987;52(1):21–29. doi: 10.1016/0378-1119(87)90391-x. [DOI] [PubMed] [Google Scholar]
  15. Lau R. H., MacKenzie M. M., Doolittle W. F. Phycocyanin synthesis and degradation in the blue-green bacterium Anacystis nidulans. J Bacteriol. 1977 Dec;132(3):771–778. doi: 10.1128/jb.132.3.771-778.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Laudenbach D. E., Ehrhardt D., Green L., Grossman A. Isolation and characterization of a sulfur-regulated gene encoding a periplasmically localized protein with sequence similarity to rhodanese. J Bacteriol. 1991 May;173(9):2751–2760. doi: 10.1128/jb.173.9.2751-2760.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lönneborg A., Lind L. K., Kalla S. R., Gustafsson P., Oquist G. Acclimation Processes in the Light-Harvesting System of the Cyanobacterium Anacystis nidulans following a Light Shift from White to Red Light. Plant Physiol. 1985 May;78(1):110–114. doi: 10.1104/pp.78.1.110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Maldener I., Lockau W., Cai Y. P., Wolk C. P. Calcium-dependent protease of the cyanobacterium Anabaena: molecular cloning and expression of the gene in Escherichia coli, sequencing and site-directed mutagenesis. Mol Gen Genet. 1991 Jan;225(1):113–120. doi: 10.1007/BF00282649. [DOI] [PubMed] [Google Scholar]
  19. Mazel D., Marlière P. Adaptive eradication of methionine and cysteine from cyanobacterial light-harvesting proteins. Nature. 1989 Sep 21;341(6239):245–248. doi: 10.1038/341245a0. [DOI] [PubMed] [Google Scholar]
  20. Merril C. R. Gel-staining techniques. Methods Enzymol. 1990;182:477–488. doi: 10.1016/0076-6879(90)82038-4. [DOI] [PubMed] [Google Scholar]
  21. Miller L. S., Holt S. C. Effect of carbon dioxide on pigment and membrane content in Synechococcus lividus. Arch Microbiol. 1977 Nov 18;115(2):185–198. doi: 10.1007/BF00406374. [DOI] [PubMed] [Google Scholar]
  22. Mohamed A., Jansson C. Influence of light on accumulation of photosynthesis-specific transcripts in the cyanobacterium Synechocystis 6803. Plant Mol Biol. 1989 Dec;13(6):693–700. doi: 10.1007/BF00016024. [DOI] [PubMed] [Google Scholar]
  23. Omata T., Ogawa T. Biosynthesis of a 42-kD Polypeptide in the Cytoplasmic Membrane of the Cyanobacterium Anacystis nidulans Strain R2 during Adaptation to Low CO(2) Concentration. Plant Physiol. 1986 Feb;80(2):525–530. doi: 10.1104/pp.80.2.525. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Ray J. M., Bhaya D., Block M. A., Grossman A. R. Isolation, transcription, and inactivation of the gene for an atypical alkaline phosphatase of Synechococcus sp. strain PCC 7942. J Bacteriol. 1991 Jul;173(14):4297–4309. doi: 10.1128/jb.173.14.4297-4309.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Sherman D. M., Sherman L. A. Effect of iron deficiency and iron restoration on ultrastructure of Anacystis nidulans. J Bacteriol. 1983 Oct;156(1):393–401. doi: 10.1128/jb.156.1.393-401.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Wood N. B., Haselkorn R. Control of phycobiliprotein proteolysis and heterocyst differentiation in Anabaena. J Bacteriol. 1980 Mar;141(3):1375–1385. doi: 10.1128/jb.141.3.1375-1385.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Wyman M., Gregory R. P., Carr N. G. Novel Role for Phycoerythrin in a Marine Cyanobacterium, Synechococcus Strain DC2. Science. 1985 Nov 15;230(4727):818–820. doi: 10.1126/science.230.4727.818. [DOI] [PubMed] [Google Scholar]
  28. Yeh S. W., Ong L. J., Glazer A. N. Role of phycoerythrin in marine picoplankton Synechococcus spp. Science. 1986 Dec 12;234(4782):1422–1424. doi: 10.1126/science.3097824. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES