Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1998;78(Suppl 3):27–34. doi: 10.1038/bjc.1998.751

Preclinical cellular pharmacology of LY231514 (MTA): a comparison with methotrexate, LY309887 and raltitrexed for their effects on intracellular folate and nucleoside triphosphate pools in CCRF-CEM cells.

V J Chen 1, J R Bewley 1, S L Andis 1, R M Schultz 1, P W Iversen 1, C Shih 1, L G Mendelsohn 1, D E Seitz 1, J L Tonkinson 1
PMCID: PMC2062799  PMID: 9717988

Abstract

LY231514 (N-[4-[2-(2-amino-3,4-dihydro-4-oxo-7H-pyrrolo[2,3-d]pyrimidin-5-yl)ethy l]-benzoyl]-L-glutamic acid) is a new folate-based antimetabolite currently in broad phase II clinical evaluation. Previous in vitro studies (C. Shih et al, CancerRes 57: 1116-1123, 1997) have suggested that LY231514 could be a multitargeted antifolate (MTA) capable of inhibiting thymidylate synthase (TS), dihydrofolate reductase (DHFR) and glycinamide ribonucleotide formyltransferase (GARFT). The present study compared LY231514 with methotrexate, raltitrexed and a glycinamide ribonucleotide formyltransferase inhibitor, LY309887, at 300, 100, 30 and 100 nM, respectively, for their effects on intracellular folate and at 100, 66, 20 and 30 nM respectively, for their effects on nucleoside triphosphate pools in CCRF-CEM cells. Methotrexate induced an accumulation of dihydrofolate species, together with a rapid depletion of ATP, GTP and all of the deoxynucleoside triphosphates. LY309887 caused an accumulation of 10-formyltetrahydrofolate, a rapid loss of ATP, GTP and dATP, but a slower loss in dCTP, dTTP and dGTP. Both LY231514 and raltitrexed had minimal effects on folate pools. In contrast, they caused rapid depletion of dTTP, dCTP and dGTP, but induced an accumulation of dATP at different rates, with raltitrexed doing so about 2.5 times faster. Most of the observed metabolic changes could be understood on the basis of current knowledge of folate and nucleotide metabolism. We concluded that LY231514 was distinct from methotrexate, LY309887 and raltitrexed based on their metabolic effects in CCRF-CEM cells, and that in this cell line the inhibitory effects of LY231514 were exerted primarily against the thymidylate cycle and secondarily against de novo purine biosynthesis.

Full text

PDF
27

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ackland S. P., Schilsky R. L. High-dose methotrexate: a critical reappraisal. J Clin Oncol. 1987 Dec;5(12):2017–2031. doi: 10.1200/JCO.1987.5.12.2017. [DOI] [PubMed] [Google Scholar]
  2. Aherne G. W., Hardcastle A., Raynaud F., Jackman A. L. Immunoreactive dUMP and TTP pools as an index of thymidylate synthase inhibition; effect of tomudex (ZD1694) and a nonpolyglutamated quinazoline antifolate (CB30900) in L1210 mouse leukaemia cells. Biochem Pharmacol. 1996 May 17;51(10):1293–1301. doi: 10.1016/0006-2952(96)00035-4. [DOI] [PubMed] [Google Scholar]
  3. Allegra C. J., Fine R. L., Drake J. C., Chabner B. A. The effect of methotrexate on intracellular folate pools in human MCF-7 breast cancer cells. Evidence for direct inhibition of purine synthesis. J Biol Chem. 1986 May 15;261(14):6478–6485. [PubMed] [Google Scholar]
  4. Baram J., Allegra C. J., Fine R. L., Chabner B. A. Effect of methotrexate on intracellular folate pools in purified myeloid precursor cells from normal human bone marrow. J Clin Invest. 1987 Mar;79(3):692–697. doi: 10.1172/JCI112872. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chong L. K., Tattersall M. H. 5,10-Dideazatetrahydrofolic acid reduces toxicity and deoxyadenosine triphosphate pool, expansion in cultured L1210 cells treated with inhibitors of thymidylate synthase. Biochem Pharmacol. 1995 Mar 15;49(6):819–827. doi: 10.1016/0006-2952(94)00458-x. [DOI] [PubMed] [Google Scholar]
  6. Garrett C., Santi D. V. A rapid and sensitive high pressure liquid chromatography assay for deoxyribonucleoside triphosphates in cell extracts. Anal Biochem. 1979 Nov 1;99(2):268–273. doi: 10.1016/s0003-2697(79)80005-6. [DOI] [PubMed] [Google Scholar]
  7. Habeck L. L., Leitner T. A., Shackelford K. A., Gossett L. S., Schultz R. M., Andis S. L., Shih C., Grindey G. B., Mendelsohn L. G. A novel class of monoglutamated antifolates exhibits tight-binding inhibition of human glycinamide ribonucleotide formyltransferase and potent activity against solid tumors. Cancer Res. 1994 Feb 15;54(4):1021–1026. [PubMed] [Google Scholar]
  8. Habeck L. L., Mendelsohn L. G., Shih C., Taylor E. C., Colman P. D., Gossett L. S., Leitner T. A., Schultz R. M., Andis S. L., Moran R. G. Substrate specificity of mammalian folylpolyglutamate synthetase for 5,10-dideazatetrahydrofolate analogs. Mol Pharmacol. 1995 Aug;48(2):326–333. [PubMed] [Google Scholar]
  9. Hanauske A. R. The development of new chemotherapeutic agents. Anticancer Drugs. 1996 Aug;7 (Suppl 2):29–32. [PubMed] [Google Scholar]
  10. Jackman A. L., Calvert A. H. Folate-based thymidylate synthase inhibitors as anticancer drugs. Ann Oncol. 1995 Nov;6(9):871–881. doi: 10.1093/oxfordjournals.annonc.a059353. [DOI] [PubMed] [Google Scholar]
  11. Jackson R. C., Jackman A. L., Calvert A. H. Biochemical effects of a quinazoline inhibitor of thymidylate synthetase, N-(4-(N-(( 2-amino-4-hydroxy-6-quinazolinyl)methyl)prop-2-ynylamino) benzoyl)-L-glutamic acid (CB3717), on human lymphoblastoid cells. Biochem Pharmacol. 1983 Dec 15;32(24):3783–3790. doi: 10.1016/0006-2952(83)90150-8. [DOI] [PubMed] [Google Scholar]
  12. Kinahan J. J., Otten M., Grindey G. B. Evaluation of ribonucleoside and deoxyribonucleoside triphosphate pools in cultured leukemia cells during exposure to methotrexate or methotrexate plus thymidine. Cancer Res. 1979 Sep;39(9):3531–3539. [PubMed] [Google Scholar]
  13. Kwok J. B., Tattersall M. H. DNA fragmentation, dATP pool elevation and potentiation of antifolate cytotoxicity in L1210 cells by hypoxanthine. Br J Cancer. 1992 Apr;65(4):503–508. doi: 10.1038/bjc.1992.104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Matherly L. H., Muench S. P. Evidence for a localized conversion of endogenous tetrahydrofolate cofactors to dihydrofolate as an important element in antifolate action in murine leukemia cells. Biochem Pharmacol. 1990 Jun 15;39(12):2005–2014. doi: 10.1016/0006-2952(90)90622-r. [DOI] [PubMed] [Google Scholar]
  15. Mendelsohn L. G., Shih C., Schultz R. M., Worzalla J. F. Biochemistry and pharmacology of glycinamide ribonucleotide formyltransferase inhibitors: LY309887 and lometrexol. Invest New Drugs. 1996;14(3):287–294. doi: 10.1007/BF00194532. [DOI] [PubMed] [Google Scholar]
  16. Newman E. M., Santi D. V. Metabolism and mechanism of action of 5-fluorodeoxycytidine. Proc Natl Acad Sci U S A. 1982 Nov;79(21):6419–6423. doi: 10.1073/pnas.79.21.6419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Oliver F. J., Collins M. K., López-Rivas A. dNTP pools imbalance as a signal to initiate apoptosis. Experientia. 1996 Oct 31;52(10-11):995–1000. doi: 10.1007/BF01920108. [DOI] [PubMed] [Google Scholar]
  18. Pizzorno G., Moroson B. A., Cashmore A. R., Beardsley G. P. (6R)-5,10-Dideaza-5,6,7,8-tetrahydrofolic acid effects on nucleotide metabolism in CCRF-CEM human T-lymphoblast leukemia cells. Cancer Res. 1991 May 1;51(9):2291–2295. [PubMed] [Google Scholar]
  19. Reichard P. Interactions between deoxyribonucleotide and DNA synthesis. Annu Rev Biochem. 1988;57:349–374. doi: 10.1146/annurev.bi.57.070188.002025. [DOI] [PubMed] [Google Scholar]
  20. Rinaldi D. A., Burris H. A., Dorr F. A., Woodworth J. R., Kuhn J. G., Eckardt J. R., Rodriguez G., Corso S. W., Fields S. M., Langley C. Initial phase I evaluation of the novel thymidylate synthase inhibitor, LY231514, using the modified continual reassessment method for dose escalation. J Clin Oncol. 1995 Nov;13(11):2842–2850. doi: 10.1200/JCO.1995.13.11.2842. [DOI] [PubMed] [Google Scholar]
  21. Schultz R. M. Newer antifolates in cancer therapy. Prog Drug Res. 1995;44:129–157. doi: 10.1007/978-3-0348-7161-7_4. [DOI] [PubMed] [Google Scholar]
  22. Shih C., Chen V. J., Gossett L. S., Gates S. B., MacKellar W. C., Habeck L. L., Shackelford K. A., Mendelsohn L. G., Soose D. J., Patel V. F. LY231514, a pyrrolo[2,3-d]pyrimidine-based antifolate that inhibits multiple folate-requiring enzymes. Cancer Res. 1997 Mar 15;57(6):1116–1123. [PubMed] [Google Scholar]
  23. Strong W. B., Tendler S. J., Seither R. L., Goldman I. D., Schirch V. Purification and properties of serine hydroxymethyltransferase and C1-tetrahydrofolate synthase from L1210 cells. J Biol Chem. 1990 Jul 25;265(21):12149–12155. [PubMed] [Google Scholar]
  24. Taylor E. C., Kuhnt D., Shih C., Rinzel S. M., Grindey G. B., Barredo J., Jannatipour M., Moran R. G. A dideazatetrahydrofolate analogue lacking a chiral center at C-6, N-[4-[2-(2-amino-3,4-dihydro-4-oxo-7H-pyrrolo[2,3-d]pyrimidin-5- yl)ethyl]benzoyl]-L-glutamic acid, is an inhibitor of thymidylate synthase. J Med Chem. 1992 Nov 13;35(23):4450–4454. doi: 10.1021/jm00101a023. [DOI] [PubMed] [Google Scholar]
  25. Taylor I. W., Slowiaczek P., Francis P. R., Tattersall M. H. Biochemical and cell cycle perturbations in methotrexate-treated cells. Mol Pharmacol. 1982 Jan;21(1):204–210. [PubMed] [Google Scholar]
  26. Taylor I. W., Slowiaczek P., Francis P. R., Tattersall M. H. Purine modulation of methotrexate cytotoxicity in mammalian cell lines. Cancer Res. 1982 Dec;42(12):5159–5164. [PubMed] [Google Scholar]
  27. Trent D. F., Seither R. L., Goldman I. D. Compartmentation of intracellular folates. Failure to interconvert tetrahydrofolate cofactors to dihydrofolate in mitochondria of L1210 leukemia cells treated with trimetrexate. Biochem Pharmacol. 1991 Aug 8;42(5):1015–1019. doi: 10.1016/0006-2952(91)90283-b. [DOI] [PubMed] [Google Scholar]
  28. Webber S., Bartlett C. A., Boritzki T. J., Hillard J. A., Howland E. F., Johnston A. L., Kosa M., Margosiak S. A., Morse C. A., Shetty B. V. AG337, a novel lipophilic thymidylate synthase inhibitor: in vitro and in vivo preclinical studies. Cancer Chemother Pharmacol. 1996;37(6):509–517. doi: 10.1007/s002800050422. [DOI] [PubMed] [Google Scholar]
  29. Wilson S. D., Horne D. W. Evaluation of ascorbic acid in protecting labile folic acid derivatives. Proc Natl Acad Sci U S A. 1983 Nov;80(21):6500–6504. doi: 10.1073/pnas.80.21.6500. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES