Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1998 Aug;78(3):375–381. doi: 10.1038/bjc.1998.502

Therapy effect of either paclitaxel or cyclophosphamide combination treatment in patients with epithelial ovarian cancer and relation to TP53 gene status.

B Smith-Sørensen 1, J Kaern 1, R Holm 1, A Dørum 1, C Tropé 1, A L Børresen-Dale 1
PMCID: PMC2063030  PMID: 9703286

Abstract

Cell death after treatment with chemotherapy is exerted by activation of apoptosis, and the p53 protein has been shown to actively participate in this process. This recent focus on TP53 status as a possible determinant of cancer therapy response has raised the question of whether or not mutations in the TP53 gene have an influence on paclitaxel therapy. The TP53 status has been analysed at the DNA level in tumours from 45 ovarian cancer patients randomized to treatment with paclitaxel and cisplatin or cyclophosphamide and cisplatin. Therapy response was obtained for 38 patients with clinically evaluable disease after initial surgery. The positive response rate to the paclitaxel/cisplatin therapy was 85% vs 61% for the patients who received the cyclophosphamide/cisplatin regimen. A significant difference in relapse-free survival in favour of paclitaxel/cisplatin chemotherapy was found (P = 0.001). A total of 33 tumour samples (73%) had detectable sequence alterations in the TP53 gene. When relapse-free survival was estimated for all patients with TP53 alterations in their tumours, a significant better outcome for the paclitaxel/cisplatin group was found compared with the patient group receiving cyclophosphamide and cisplatin therapy (P = 0.002). We did not observe an association between TP53 tumour status and prognosis for patients who received paclitaxel/cisplatin combination treatment, indicating that the effect of this therapy is not influenced by this parameter.

Full text

PDF
375

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aas T., Børresen A. L., Geisler S., Smith-Sørensen B., Johnsen H., Varhaug J. E., Akslen L. A., Lønning P. E. Specific P53 mutations are associated with de novo resistance to doxorubicin in breast cancer patients. Nat Med. 1996 Jul;2(7):811–814. doi: 10.1038/nm0796-811. [DOI] [PubMed] [Google Scholar]
  2. Agarwal M. L., Agarwal A., Taylor W. R., Stark G. R. p53 controls both the G2/M and the G1 cell cycle checkpoints and mediates reversible growth arrest in human fibroblasts. Proc Natl Acad Sci U S A. 1995 Aug 29;92(18):8493–8497. doi: 10.1073/pnas.92.18.8493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Andersen T. I., Børresen A. L. Alterations of the TP53 gene as a potential prognostic marker in breast carcinomas. Advantages of using constant denaturant gel electrophoresis in mutation detection. Diagn Mol Pathol. 1995 Sep;4(3):203–211. doi: 10.1097/00019606-199509000-00008. [DOI] [PubMed] [Google Scholar]
  4. Bhalla K., Huang Y., Tang C., Self S., Ray S., Mahoney M. E., Ponnathpur V., Tourkina E., Ibrado A. M., Bullock G. Characterization of a human myeloid leukemia cell line highly resistant to taxol. Leukemia. 1994 Mar;8(3):465–475. [PubMed] [Google Scholar]
  5. Bhalla K., Ibrado A. M., Tourkina E., Tang C., Mahoney M. E., Huang Y. Taxol induces internucleosomal DNA fragmentation associated with programmed cell death in human myeloid leukemia cells. Leukemia. 1993 Apr;7(4):563–568. [PubMed] [Google Scholar]
  6. Blagosklonny M. V., Schulte T. W., Nguyen P., Mimnaugh E. G., Trepel J., Neckers L. Taxol induction of p21WAF1 and p53 requires c-raf-1. Cancer Res. 1995 Oct 15;55(20):4623–4626. [PubMed] [Google Scholar]
  7. Buttitta F., Marchetti A., Gadducci A., Pellegrini S., Morganti M., Carnicelli V., Cosio S., Gagetti O., Genazzani A. R., Bevilacqua G. p53 alterations are predictive of chemoresistance and aggressiveness in ovarian carcinomas: a molecular and immunohistochemical study. Br J Cancer. 1997;75(2):230–235. doi: 10.1038/bjc.1997.38. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Børresen A. L., Hovig E., Smith-Sørensen B., Malkin D., Lystad S., Andersen T. I., Nesland J. M., Isselbacher K. J., Friend S. H. Constant denaturant gel electrophoresis as a rapid screening technique for p53 mutations. Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8405–8409. doi: 10.1073/pnas.88.19.8405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Clarke A. R., Purdie C. A., Harrison D. J., Morris R. G., Bird C. C., Hooper M. L., Wyllie A. H. Thymocyte apoptosis induced by p53-dependent and independent pathways. Nature. 1993 Apr 29;362(6423):849–852. doi: 10.1038/362849a0. [DOI] [PubMed] [Google Scholar]
  10. Delia D., Mizutani S., Lamorte G., Goi K., Iwata S., Pierotti M. A. p53 activity and chemotherapy. Nat Med. 1996 Jul;2(7):724–725. doi: 10.1038/nm0796-724. [DOI] [PubMed] [Google Scholar]
  11. Dole M. G., Jasty R., Cooper M. J., Thompson C. B., Nuñez G., Castle V. P. Bcl-xL is expressed in neuroblastoma cells and modulates chemotherapy-induced apoptosis. Cancer Res. 1995 Jun 15;55(12):2576–2582. [PubMed] [Google Scholar]
  12. Eastman A. Activation of programmed cell death by anticancer agents: cisplatin as a model system. Cancer Cells. 1990 Aug-Sep;2(8-9):275–280. [PubMed] [Google Scholar]
  13. Fischer S. G., Lerman L. S. DNA fragments differing by single base-pair substitutions are separated in denaturing gradient gels: correspondence with melting theory. Proc Natl Acad Sci U S A. 1983 Mar;80(6):1579–1583. doi: 10.1073/pnas.80.6.1579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Frebourg T., Barbier N., Kassel J., Ng Y. S., Romero P., Friend S. H. A functional screen for germ line p53 mutations based on transcriptional activation. Cancer Res. 1992 Dec 15;52(24):6976–6978. [PubMed] [Google Scholar]
  15. Gangemi R. M., Tiso M., Marchetti C., Severi A. B., Fabbi M. Taxol cytotoxicity on human leukemia cell lines is a function of their susceptibility to programmed cell death. Cancer Chemother Pharmacol. 1995;36(5):385–392. doi: 10.1007/BF00686187. [DOI] [PubMed] [Google Scholar]
  16. Guillouf C., Rosselli F., Krishnaraju K., Moustacchi E., Hoffman B., Liebermann D. A. p53 involvement in control of G2 exit of the cell cycle: role in DNA damage-induced apoptosis. Oncogene. 1995 Jun 1;10(11):2263–2270. [PubMed] [Google Scholar]
  17. Hainaut P., Soussi T., Shomer B., Hollstein M., Greenblatt M., Hovig E., Harris C. C., Montesano R. Database of p53 gene somatic mutations in human tumors and cell lines: updated compilation and future prospects. Nucleic Acids Res. 1997 Jan 1;25(1):151–157. doi: 10.1093/nar/25.1.151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Haldar S., Chintapalli J., Croce C. M. Taxol induces bcl-2 phosphorylation and death of prostate cancer cells. Cancer Res. 1996 Mar 15;56(6):1253–1255. [PubMed] [Google Scholar]
  19. Haldar S., Negrini M., Monne M., Sabbioni S., Croce C. M. Down-regulation of bcl-2 by p53 in breast cancer cells. Cancer Res. 1994 Apr 15;54(8):2095–2097. [PubMed] [Google Scholar]
  20. Havrilesky L. J., Elbendary A., Hurteau J. A., Whitaker R. S., Rodriguez G. C., Berchuck A. Chemotherapy-induced apoptosis in epithelial ovarian cancers. Obstet Gynecol. 1995 Jun;85(6):1007–1010. doi: 10.1016/0029-7844(95)00058-y. [DOI] [PubMed] [Google Scholar]
  21. Hawkins D. S., Demers G. W., Galloway D. A. Inactivation of p53 enhances sensitivity to multiple chemotherapeutic agents. Cancer Res. 1996 Feb 15;56(4):892–898. [PubMed] [Google Scholar]
  22. Hickman J. A. Apoptosis induced by anticancer drugs. Cancer Metastasis Rev. 1992 Sep;11(2):121–139. doi: 10.1007/BF00048059. [DOI] [PubMed] [Google Scholar]
  23. Horwitz S. B. Mechanism of action of taxol. Trends Pharmacol Sci. 1992 Apr;13(4):134–136. doi: 10.1016/0165-6147(92)90048-b. [DOI] [PubMed] [Google Scholar]
  24. Kerr J. F., Wyllie A. H., Currie A. R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 1972 Aug;26(4):239–257. doi: 10.1038/bjc.1972.33. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Kuerbitz S. J., Plunkett B. S., Walsh W. V., Kastan M. B. Wild-type p53 is a cell cycle checkpoint determinant following irradiation. Proc Natl Acad Sci U S A. 1992 Aug 15;89(16):7491–7495. doi: 10.1073/pnas.89.16.7491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Lavarino C., Delia D., Di Palma S., Zunino F., Pilotti S. p53 in drug resistance in ovarian cancer. Lancet. 1997 May 24;349(9064):1556–1556. doi: 10.1016/S0140-6736(05)62140-X. [DOI] [PubMed] [Google Scholar]
  27. Levesque M. A., Katsaros D., Yu H., Zola P., Sismondi P., Giardina G., Diamandis E. P. Mutant p53 protein overexpression is associated with poor outcome in patients with well or moderately differentiated ovarian carcinoma. Cancer. 1995 Mar 15;75(6):1327–1338. doi: 10.1002/1097-0142(19950315)75:6<1327::aid-cncr2820750615>3.0.co;2-p. [DOI] [PubMed] [Google Scholar]
  28. Lowe S. W., Bodis S., McClatchey A., Remington L., Ruley H. E., Fisher D. E., Housman D. E., Jacks T. p53 status and the efficacy of cancer therapy in vivo. Science. 1994 Nov 4;266(5186):807–810. doi: 10.1126/science.7973635. [DOI] [PubMed] [Google Scholar]
  29. Lowe S. W., Ruley H. E., Jacks T., Housman D. E. p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell. 1993 Sep 24;74(6):957–967. doi: 10.1016/0092-8674(93)90719-7. [DOI] [PubMed] [Google Scholar]
  30. Lowe S. W., Schmitt E. M., Smith S. W., Osborne B. A., Jacks T. p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature. 1993 Apr 29;362(6423):847–849. doi: 10.1038/362847a0. [DOI] [PubMed] [Google Scholar]
  31. Marks J. R., Davidoff A. M., Kerns B. J., Humphrey P. A., Pence J. C., Dodge R. K., Clarke-Pearson D. L., Iglehart J. D., Bast R. C., Jr, Berchuck A. Overexpression and mutation of p53 in epithelial ovarian cancer. Cancer Res. 1991 Jun 1;51(11):2979–2984. [PubMed] [Google Scholar]
  32. Mazars R., Pujol P., Maudelonde T., Jeanteur P., Theillet C. p53 mutations in ovarian cancer: a late event? Oncogene. 1991 Sep;6(9):1685–1690. [PubMed] [Google Scholar]
  33. McGuire W. P., Hoskins W. J., Brady M. F., Kucera P. R., Partridge E. E., Look K. Y., Clarke-Pearson D. L., Davidson M. Cyclophosphamide and cisplatin compared with paclitaxel and cisplatin in patients with stage III and stage IV ovarian cancer. N Engl J Med. 1996 Jan 4;334(1):1–6. doi: 10.1056/NEJM199601043340101. [DOI] [PubMed] [Google Scholar]
  34. Milas L., Hunter N. R., Kurdoglu B., Mason K. A., Meyn R. E., Stephens L. C., Peters L. J. Kinetics of mitotic arrest and apoptosis in murine mammary and ovarian tumors treated with taxol. Cancer Chemother Pharmacol. 1995;35(4):297–303. doi: 10.1007/BF00689448. [DOI] [PubMed] [Google Scholar]
  35. Milross C. G., Peters L. J., Hunter N. R., Mason K. A., Milas L. Sequence-dependent antitumor activity of paclitaxel (taxol) and cisplatin in vivo. Int J Cancer. 1995 Sep 4;62(5):599–604. doi: 10.1002/ijc.2910620518. [DOI] [PubMed] [Google Scholar]
  36. Miyashita T., Krajewski S., Krajewska M., Wang H. G., Lin H. K., Liebermann D. A., Hoffman B., Reed J. C. Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo. Oncogene. 1994 Jun;9(6):1799–1805. [PubMed] [Google Scholar]
  37. Okamoto A., Sameshima Y., Yokoyama S., Terashima Y., Sugimura T., Terada M., Yokota J. Frequent allelic losses and mutations of the p53 gene in human ovarian cancer. Cancer Res. 1991 Oct 1;51(19):5171–5176. [PubMed] [Google Scholar]
  38. Righetti S. C., Della Torre G., Pilotti S., Ménard S., Ottone F., Colnaghi M. I., Pierotti M. A., Lavarino C., Cornarotti M., Oriana S. A comparative study of p53 gene mutations, protein accumulation, and response to cisplatin-based chemotherapy in advanced ovarian carcinoma. Cancer Res. 1996 Feb 15;56(4):689–693. [PubMed] [Google Scholar]
  39. Sato T., Hanada M., Bodrug S., Irie S., Iwama N., Boise L. H., Thompson C. B., Golemis E., Fong L., Wang H. G. Interactions among members of the Bcl-2 protein family analyzed with a yeast two-hybrid system. Proc Natl Acad Sci U S A. 1994 Sep 27;91(20):9238–9242. doi: 10.1073/pnas.91.20.9238. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Schiff P. B., Fant J., Horwitz S. B. Promotion of microtubule assembly in vitro by taxol. Nature. 1979 Feb 22;277(5698):665–667. doi: 10.1038/277665a0. [DOI] [PubMed] [Google Scholar]
  41. Smith-Sørensen B., Gebhardt M. C., Kloen P., McIntyre J., Aguilar F., Cerutti P., Børresen A. L. Screening for TP53 mutations in osteosarcomas using constant denaturant gel electrophoresis (CDGE). Hum Mutat. 1993;2(4):274–285. doi: 10.1002/humu.1380020407. [DOI] [PubMed] [Google Scholar]
  42. Vaux D. L. Toward an understanding of the molecular mechanisms of physiological cell death. Proc Natl Acad Sci U S A. 1993 Feb 1;90(3):786–789. doi: 10.1073/pnas.90.3.786. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Vogelstein B., Kinzler K. W. Tumour-suppressor genes. X-rays strike p53 again. Nature. 1994 Jul 21;370(6486):174–175. doi: 10.1038/370174a0. [DOI] [PubMed] [Google Scholar]
  44. Wahl A. F., Donaldson K. L., Fairchild C., Lee F. Y., Foster S. A., Demers G. W., Galloway D. A. Loss of normal p53 function confers sensitization to Taxol by increasing G2/M arrest and apoptosis. Nat Med. 1996 Jan;2(1):72–79. doi: 10.1038/nm0196-72. [DOI] [PubMed] [Google Scholar]
  45. Wu G. S., El-Diery W. S. p53 and chemosensitivity. Nat Med. 1996 Mar;2(3):255–256. doi: 10.1038/nm0396-255a. [DOI] [PubMed] [Google Scholar]
  46. Yang E., Zha J., Jockel J., Boise L. H., Thompson C. B., Korsmeyer S. J. Bad, a heterodimeric partner for Bcl-XL and Bcl-2, displaces Bax and promotes cell death. Cell. 1995 Jan 27;80(2):285–291. doi: 10.1016/0092-8674(95)90411-5. [DOI] [PubMed] [Google Scholar]
  47. Yin X. M., Oltvai Z. N., Korsmeyer S. J. BH1 and BH2 domains of Bcl-2 are required for inhibition of apoptosis and heterodimerization with Bax. Nature. 1994 May 26;369(6478):321–323. doi: 10.1038/369321a0. [DOI] [PubMed] [Google Scholar]
  48. van der Zee A. G., Hollema H., Suurmeijer A. J., Krans M., Sluiter W. J., Willemse P. H., Aalders J. G., de Vries E. G. Value of P-glycoprotein, glutathione S-transferase pi, c-erbB-2, and p53 as prognostic factors in ovarian carcinomas. J Clin Oncol. 1995 Jan;13(1):70–78. doi: 10.1200/JCO.1995.13.1.70. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES