Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1998 Sep;78(5):593–600. doi: 10.1038/bjc.1998.546

Cytotoxic effect of the cyclosporin PSC 833 in multidrug-resistant leukaemia cells with increased expression of P-glycoprotein.

G Lehne 1, H E Rugstad 1
PMCID: PMC2063045  PMID: 9744497

Abstract

Multidrug resistance (MDR) to anti-cancer agents is frequently associated with overexpression of the drug efflux transporter P-glycoprotein (Pgp) in cancer cells, ensuing drug expulsion and maintenance of tolerable intracellular levels of certain cytotoxic drugs. Pgp may also be present in normal tissue, providing protection against toxic substances, but the physiological role of Pgp is not fully understood. Recently, it was shown that Pgp also takes part in the transport of certain growth-regulating cytokines (Drach et al, 1996; Raghu et al, 1996). Therefore, we studied the effect of the highly potent Pgp inhibitor PSC 833 on proliferation of three pairs of MDR and parental human cell lines (HB8065 hepatoma cells, KG1a and K562 leukaemia cells). The MDR phenotypes were characterized by Pgp overexpression, which was demonstrated by flow cytometry using the anti-Pgp antibody MRK16. Electronic cell counting of 72-96 h cultures revealed a dose-dependent antiproliferative effect of PSC 833 in the resistant KG1a/200 and K562/150 cells. The half-maximal growth inhibitory concentrations (GI50) were 0.2 microM and 0.7 microM respectively. Exposure to PSC 833 induced cell death by apoptosis in both cell types, as revealed by flow cytometry and detection of 3'-hydroxy ends of DNA (the result of DNA fragmentation associated with apoptosis), by terminal transferase-mediated dUTP-biotin nick end-labelling (TUNEL). Similar effects were not found in the hepatoma cell lines or the parental leukaemia lines. These results demonstrated a discriminating cytotoxicity of PSC 833 in two human leukaemia MDR variants, representing a possible therapeutic indication which warrants consideration during the ongoing clinical evaluation of this drug.

Full text

PDF
593

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akiyama S., Cornwell M. M., Kuwano M., Pastan I., Gottesman M. M. Most drugs that reverse multidrug resistance also inhibit photoaffinity labeling of P-glycoprotein by a vinblastine analog. Mol Pharmacol. 1988 Feb;33(2):144–147. [PubMed] [Google Scholar]
  2. Archinal-Mattheis A., Rzepka R. W., Watanabe T., Kokubu N., Itoh Y., Combates N. J., Bair K. W., Cohen D. Analysis of the interactions of SDZ PSC 833 ([3'-keto-Bmt1]-Val2]-Cyclosporine), a multidrug resistance modulator, with P-glycoprotein. Oncol Res. 1995;7(12):603–610. [PubMed] [Google Scholar]
  3. Baldini N., Scotlandi K., Barbanti-Bròdano G., Manara M. C., Maurici D., Bacci G., Bertoni F., Picci P., Sottili S., Campanacci M. Expression of P-glycoprotein in high-grade osteosarcomas in relation to clinical outcome. N Engl J Med. 1995 Nov 23;333(21):1380–1385. doi: 10.1056/NEJM199511233332103. [DOI] [PubMed] [Google Scholar]
  4. Boote D. J., Dennis I. F., Twentyman P. R., Osborne R. J., Laburte C., Hensel S., Smyth J. F., Brampton M. H., Bleehen N. M. Phase I study of etoposide with SDZ PSC 833 as a modulator of multidrug resistance in patients with cancer. J Clin Oncol. 1996 Feb;14(2):610–618. doi: 10.1200/JCO.1996.14.2.610. [DOI] [PubMed] [Google Scholar]
  5. Breuninger L. M., Paul S., Gaughan K., Miki T., Chan A., Aaronson S. A., Kruh G. D. Expression of multidrug resistance-associated protein in NIH/3T3 cells confers multidrug resistance associated with increased drug efflux and altered intracellular drug distribution. Cancer Res. 1995 Nov 15;55(22):5342–5347. [PubMed] [Google Scholar]
  6. Böhme M., Jedlitschky G., Leier I., Büchler M., Keppler D. ATP-dependent export pumps and their inhibition by cyclosporins. Adv Enzyme Regul. 1994;34:371–380. doi: 10.1016/0065-2571(94)90023-x. [DOI] [PubMed] [Google Scholar]
  7. Callaghan R., Riordan J. R. Collateral sensitivity of multidrug resistant cells to narcotic analgesics is due to effects on the plasma membrane. Biochim Biophys Acta. 1995 May 24;1236(1):155–162. doi: 10.1016/0005-2736(95)00042-2. [DOI] [PubMed] [Google Scholar]
  8. Candell J., Valle V., Soler M., Rius J. Acute intoxication with verapamil. Chest. 1979 Feb;75(2):200–201. doi: 10.1378/chest.75.2.200. [DOI] [PubMed] [Google Scholar]
  9. Chan H. S., DeBoer G., Haddad G., Gallie B. L., Ling V. Multidrug resistance in pediatric malignancies. Hematol Oncol Clin North Am. 1995 Apr;9(2):275–318. [PubMed] [Google Scholar]
  10. Chaudhary P. M., Roninson I. B. Expression and activity of P-glycoprotein, a multidrug efflux pump, in human hematopoietic stem cells. Cell. 1991 Jul 12;66(1):85–94. doi: 10.1016/0092-8674(91)90141-k. [DOI] [PubMed] [Google Scholar]
  11. Drach J., Gsur A., Hamilton G., Zhao S., Angerler J., Fiegl M., Zojer N., Raderer M., Haberl I., Andreeff M. Involvement of P-glycoprotein in the transmembrane transport of interleukin-2 (IL-2), IL-4, and interferon-gamma in normal human T lymphocytes. Blood. 1996 Sep 1;88(5):1747–1754. [PubMed] [Google Scholar]
  12. Endicott J. A., Ling V. The biochemistry of P-glycoprotein-mediated multidrug resistance. Annu Rev Biochem. 1989;58:137–171. doi: 10.1146/annurev.bi.58.070189.001033. [DOI] [PubMed] [Google Scholar]
  13. Ferry D. R., Traunecker H., Kerr D. J. Clinical trials of P-glycoprotein reversal in solid tumours. Eur J Cancer. 1996 Jun;32A(6):1070–1081. doi: 10.1016/0959-8049(96)00091-3. [DOI] [PubMed] [Google Scholar]
  14. Fisher G. A., Sikic B. I. Clinical studies with modulators of multidrug resistance. Hematol Oncol Clin North Am. 1995 Apr;9(2):363–382. [PubMed] [Google Scholar]
  15. Ford J. M., Hait W. N. Pharmacology of drugs that alter multidrug resistance in cancer. Pharmacol Rev. 1990 Sep;42(3):155–199. [PubMed] [Google Scholar]
  16. Ford J. M. Modulators of multidrug resistance. Preclinical studies. Hematol Oncol Clin North Am. 1995 Apr;9(2):337–361. [PubMed] [Google Scholar]
  17. Foxwell B. M., Mackie A., Ling V., Ryffel B. Identification of the multidrug resistance-related P-glycoprotein as a cyclosporine binding protein. Mol Pharmacol. 1989 Oct;36(4):543–546. [PubMed] [Google Scholar]
  18. Germann U. A., Pastan I., Gottesman M. M. P-glycoproteins: mediators of multidrug resistance. Semin Cell Biol. 1993 Feb;4(1):63–76. doi: 10.1006/scel.1993.1008. [DOI] [PubMed] [Google Scholar]
  19. Gruber A., Larsson R., Nygren P., Björkholm M., Peterson C. A non-P-glycoprotein-mediated mechanism of vincristine transport which is affected by resistance modifiers and present in chemosensitive cells. Leukemia. 1994 Jun;8(6):985–989. [PubMed] [Google Scholar]
  20. Hall K. S., Endresen L., Huitfeldt H. S., Rugstad H. E. Induction of in vitro resistance to 4'-epidoxorubicin and cis-dichlorodiammineplatinum in hepatoma cells. Anticancer Res. 1991 Mar-Apr;11(2):817–823. [PubMed] [Google Scholar]
  21. Hamada H., Tsuruo T. Functional role for the 170- to 180-kDa glycoprotein specific to drug-resistant tumor cells as revealed by monoclonal antibodies. Proc Natl Acad Sci U S A. 1986 Oct;83(20):7785–7789. doi: 10.1073/pnas.83.20.7785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Koeffler H. P., Billing R., Lusis A. J., Sparkes R., Golde D. W. An undifferentiated variant derived from the human acute myelogenous leukemia cell line (KG-1). Blood. 1980 Aug;56(2):265–273. [PubMed] [Google Scholar]
  23. Krishan A. Rapid flow cytofluorometric analysis of mammalian cell cycle by propidium iodide staining. J Cell Biol. 1975 Jul;66(1):188–193. doi: 10.1083/jcb.66.1.188. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lehne G., De Angelis P., Clausen O. P., Egeland T., Tsuruo T., Rugstad H. E. Binding diversity of antibodies against external and internal epitopes of the multidrug resistance gene product P-glycoprotein. Cytometry. 1995 Jul 1;20(3):228–237. doi: 10.1002/cyto.990200306. [DOI] [PubMed] [Google Scholar]
  25. Lehne G., De Angelis P., Clausen O. P., Rugstad H. E. Human hepatoma cells rich in P-glycoprotein are sensitive to aclarubicin and resistant to three other anthracyclines. Br J Cancer. 1996 Dec;74(11):1719–1729. doi: 10.1038/bjc.1996.621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Lozzio B. B., Lozzio C. B., Bamberger E. G., Feliu A. S. A multipotential leukemia cell line (K-562) of human origin. Proc Soc Exp Biol Med. 1981 Apr;166(4):546–550. doi: 10.3181/00379727-166-41106. [DOI] [PubMed] [Google Scholar]
  27. Malorni W., Rainaldi G., Tritarelli E., Rivabene R., Cianfriglia M., Lehnert M., Donelli G., Peschele C., Testa U. Tumor necrosis factor alpha is a powerful apoptotic inducer in lymphoid leukemic cells expressing the P-170 glycoprotein. Int J Cancer. 1996 Jul 17;67(2):238–247. doi: 10.1002/(SICI)1097-0215(19960717)67:2<238::AID-IJC15>3.0.CO;2-7. [DOI] [PubMed] [Google Scholar]
  28. Marie J. P., Zhou D. C., Gurbuxani S., Legrand O., Zittoun R. MDR1/P-glycoprotein in haematological neoplasms. Eur J Cancer. 1996 Jun;32A(6):1034–1038. doi: 10.1016/0959-8049(96)00055-x. [DOI] [PubMed] [Google Scholar]
  29. Meador J., Sweet P., Stupecky M., Wetzel M., Murray S., Gupta S., Slater L. Enhancement by cyclosporin A of daunorubicin efficacy in Ehrlich ascites carcinoma and murine hepatoma 129. Cancer Res. 1987 Dec 1;47(23):6216–6219. [PubMed] [Google Scholar]
  30. Miyashita T., Reed J. C. Bcl-2 oncoprotein blocks chemotherapy-induced apoptosis in a human leukemia cell line. Blood. 1993 Jan 1;81(1):151–157. [PubMed] [Google Scholar]
  31. Mülder H. S., Dekker H., Pinedo H. M., Lankelma J. The P-glycoprotein-mediated relative decrease in cytosolic free drug concentration is similar for several anthracyclines with varying lipophilicity. Biochem Pharmacol. 1995 Sep 28;50(7):967–974. doi: 10.1016/0006-2952(95)00221-k. [DOI] [PubMed] [Google Scholar]
  32. Ormerod M. G., Collins M. K., Rodriguez-Tarduchy G., Robertson D. Apoptosis in interleukin-3-dependent haemopoietic cells. Quantification by two flow cytometric methods. J Immunol Methods. 1992 Aug 30;153(1-2):57–65. doi: 10.1016/0022-1759(92)90305-d. [DOI] [PubMed] [Google Scholar]
  33. Pastan I., Gottesman M. Multiple-drug resistance in human cancer. N Engl J Med. 1987 May 28;316(22):1388–1393. doi: 10.1056/NEJM198705283162207. [DOI] [PubMed] [Google Scholar]
  34. Quesada A. R., Barbacid M. M., Mira E., Aracil M., Márquez G. Chemosensitization and drug accumulation assays as complementary methods for the screening of multidrug resistance reversal agents. Cancer Lett. 1996 Jan 19;99(1):109–114. doi: 10.1016/0304-3835(95)04044-7. [DOI] [PubMed] [Google Scholar]
  35. Raghu G., Park S. W., Roninson I. B., Mechetner E. B. Monoclonal antibodies against P-glycoprotein, an MDR1 gene product, inhibit interleukin-2 release from PHA-activated lymphocytes. Exp Hematol. 1996 Aug;24(10):1258–1264. [PubMed] [Google Scholar]
  36. Slater L. M., Sweet P., Stupecky M., Wetzel M. W., Gupta S. Cyclosporin A corrects daunorubicin resistance in Ehrlich ascites carcinoma. Br J Cancer. 1986 Aug;54(2):235–238. doi: 10.1038/bjc.1986.167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Steller H. Mechanisms and genes of cellular suicide. Science. 1995 Mar 10;267(5203):1445–1449. doi: 10.1126/science.7878463. [DOI] [PubMed] [Google Scholar]
  38. Stow M. W., Warr J. R. Amplification and expression of mdr genes and flanking sequences in verapamil hypersensitive hamster cell lines. Biochim Biophys Acta. 1991 Mar 19;1092(1):7–14. doi: 10.1016/0167-4889(91)90171-s. [DOI] [PubMed] [Google Scholar]
  39. Stow M. W., Warr J. R. Reduced influx is a factor in accounting for reduced vincristine accumulation in certain verapamil-hypersensitive multidrug-resistant CHO cell lines. FEBS Lett. 1993 Apr 5;320(2):87–91. doi: 10.1016/0014-5793(93)80068-6. [DOI] [PubMed] [Google Scholar]
  40. Telford W. G., King L. E., Fraker P. J. Rapid quantitation of apoptosis in pure and heterogeneous cell populations using flow cytometry. J Immunol Methods. 1994 Jun 3;172(1):1–16. doi: 10.1016/0022-1759(94)90373-5. [DOI] [PubMed] [Google Scholar]
  41. Thompson C. B. Apoptosis in the pathogenesis and treatment of disease. Science. 1995 Mar 10;267(5203):1456–1462. doi: 10.1126/science.7878464. [DOI] [PubMed] [Google Scholar]
  42. Tsuruo T., Iida H., Tsukagoshi S., Sakurai Y. Overcoming of vincristine resistance in P388 leukemia in vivo and in vitro through enhanced cytotoxicity of vincristine and vinblastine by verapamil. Cancer Res. 1981 May;41(5):1967–1972. [PubMed] [Google Scholar]
  43. Twentyman P. R. A possible role for cyclosporins in cancer chemotherapy. Anticancer Res. 1988 Sep-Oct;8(5A):985–993. [PubMed] [Google Scholar]
  44. Twentyman P. R., Bleehen N. M. Resistance modification by PSC-833, a novel non-immunosuppressive cyclosporin [corrected]. Eur J Cancer. 1991;27(12):1639–1642. doi: 10.1016/0277-5379(91)90435-g. [DOI] [PubMed] [Google Scholar]
  45. Yuen A. R., Sikic B. I. Multidrug resistance in lymphomas. J Clin Oncol. 1994 Nov;12(11):2453–2459. doi: 10.1200/JCO.1994.12.11.2453. [DOI] [PubMed] [Google Scholar]
  46. de Faire U., Lundman T. Attempted suicide with verapamil. Eur J Cardiol. 1977 Oct-Nov;6(3):195–198. [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES