Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1998 Sep;78(5):631–640. doi: 10.1038/bjc.1998.553

In vitro invasion of small-cell lung cancer cell lines correlates with expression of epidermal growth factor receptor.

L Damstrup 1, B Rude Voldborg 1, M Spang-Thomsen 1, N Brünner 1, H Skovgaard Poulsen 1
PMCID: PMC2063065  PMID: 9744504

Abstract

Formation of metastasis is a multistep process involving attachment to the basement membrane, local proteolysis and migration into surrounding tissues, lymph or bloodstream. In the present study, we have analysed the correlation between in vitro invasion and presence of the epidermal growth factor receptor (EGFR) in a panel of 21 small-cell lung cancer (SCLC) cell lines. We have previously reported that ten of these cell lines expressed EGFR protein detected by radioreceptor and affinity labelling assays. In 11 small-cell lung cancer (SCLC) cell lines, EGFR mRNA was detected by Northern blot analysis. In vitro invasion in a Boyden chamber assay was found in all EGFR-positive cell lines, whereas no invasion was detected in the EGFR-negative cell lines. Quantification of the in vitro invasion in 12 selected SCLC cell lines demonstrated that, in the EGFR-positive cell lines, between 5% and 16% of the cells added to the upper chamber were able to traverse the Matrigel membrane. Expression of several matrix metalloproteases (MMP), of tissue inhibitor of MMP (TIMP) and of cathepsin B was evaluated by immunoprecipitation, Western blot analysis and reverse transcriptase polymerase chain reaction (RT-PCR). However, in vitro invasive SCLC cell lines could not be distinguished from non-invasive cell lines based on the expression pattern of these molecules. In six SCLC cell lines, in vitro invasion was also determined in the presence of the EGFR-neutralizing monoclonal antibody mAb528. The addition of this antibody resulted in a significant reduction of the in vitro invasion in three selected EGFR-positive cell lines. Our results show that only EGFR-positive SCLC cell lines had the in vitro invasive phenotype, and it is therefore suggested that the EGFR might play an important role for the invasion potential of SCLC cell lines.

Full text

PDF
631

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albini A., Iwamoto Y., Kleinman H. K., Martin G. R., Aaronson S. A., Kozlowski J. M., McEwan R. N. A rapid in vitro assay for quantitating the invasive potential of tumor cells. Cancer Res. 1987 Jun 15;47(12):3239–3245. [PubMed] [Google Scholar]
  2. Bepler G., Jaques G., Neumann K., Aumüller G., Gropp C., Havemann K. Establishment, growth properties, and morphological characteristics of permanent human small cell lung cancer cell lines. J Cancer Res Clin Oncol. 1987;113(1):31–40. doi: 10.1007/BF00389964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Berendsen H. H., de Leij L., de Vries E. G., Mesander G., Mulder N. H., de Jong B., Buys C. H., Postmus P. E., Poppema S., Sluiter H. J. Characterization of three small cell lung cancer cell lines established from one patient during longitudinal follow-up. Cancer Res. 1988 Dec 1;48(23):6891–6899. [PubMed] [Google Scholar]
  4. Carney D. N., Gazdar A. F., Bepler G., Guccion J. G., Marangos P. J., Moody T. W., Zweig M. H., Minna J. D. Establishment and identification of small cell lung cancer cell lines having classic and variant features. Cancer Res. 1985 Jun;45(6):2913–2923. [PubMed] [Google Scholar]
  5. Damstrup L., Rygaard K., Spang-Thomsen M., Poulsen H. S. Expression of the epidermal growth factor receptor in human small cell lung cancer cell lines. Cancer Res. 1992 Jun 1;52(11):3089–3093. [PubMed] [Google Scholar]
  6. Dignass A. U., Tsunekawa S., Podolsky D. K. Fibroblast growth factors modulate intestinal epithelial cell growth and migration. Gastroenterology. 1994 May;106(5):1254–1262. doi: 10.1016/0016-5085(94)90017-5. [DOI] [PubMed] [Google Scholar]
  7. Engelholm S. A., Spang-Thomsen M., Vindeløv L. L., Brünner N., Nielsen M. H., Hirsch F., Nielsen A., Hansen H. H. Comparison of characteristics of human small cell carcinoma of the lung in patients, in vitro and transplanted into nude mice. Acta Pathol Microbiol Immunol Scand A. 1986 Sep;94(5):325–336. doi: 10.1111/j.1699-0463.1986.tb03001.x. [DOI] [PubMed] [Google Scholar]
  8. Fitzpatrick S. L., LaChance M. P., Schultz G. S. Characterization of epidermal growth factor receptor and action on human breast cancer cells in culture. Cancer Res. 1984 Aug;44(8):3442–3447. [PubMed] [Google Scholar]
  9. Hamada J., Nagayasu H., Takayama M., Kawano T., Hosokawa M., Takeichi N. Enhanced effect of epidermal growth factor on pulmonary metastasis and in vitro invasion of rat mammary carcinoma cells. Cancer Lett. 1995 Mar 2;89(2):161–167. doi: 10.1016/0304-3835(95)03686-q. [DOI] [PubMed] [Google Scholar]
  10. Harvey M. B., Leco K. J., Arcellana-Panlilio M. Y., Zhang X., Edwards D. R., Schultz G. A. Proteinase expression in early mouse embryos is regulated by leukaemia inhibitory factor and epidermal growth factor. Development. 1995 Apr;121(4):1005–1014. doi: 10.1242/dev.121.4.1005. [DOI] [PubMed] [Google Scholar]
  11. Heussen C., Dowdle E. B. Electrophoretic analysis of plasminogen activators in polyacrylamide gels containing sodium dodecyl sulfate and copolymerized substrates. Anal Biochem. 1980 Feb;102(1):196–202. doi: 10.1016/0003-2697(80)90338-3. [DOI] [PubMed] [Google Scholar]
  12. Hoelting T., Siperstein A. E., Clark O. H., Duh Q. Y. Epidermal growth factor enhances proliferation, migration, and invasion of follicular and papillary thyroid cancer in vitro and in vivo. J Clin Endocrinol Metab. 1994 Aug;79(2):401–408. doi: 10.1210/jcem.79.2.8045955. [DOI] [PubMed] [Google Scholar]
  13. Hollas W., Blasi F., Boyd D. Role of the urokinase receptor in facilitating extracellular matrix invasion by cultured colon cancer. Cancer Res. 1991 Jul 15;51(14):3690–3695. [PubMed] [Google Scholar]
  14. Hoosein N. M., Boyd D. D., Hollas W. J., Mazar A., Henkin J., Chung L. W. Involvement of urokinase and its receptor in the invasiveness of human prostatic carcinoma cell lines. Cancer Commun. 1991 Aug;3(8):255–264. doi: 10.3727/095535491820873146. [DOI] [PubMed] [Google Scholar]
  15. Howard E. W., Bullen E. C., Banda M. J. Regulation of the autoactivation of human 72-kDa progelatinase by tissue inhibitor of metalloproteinases-2. J Biol Chem. 1991 Jul 15;266(20):13064–13069. [PubMed] [Google Scholar]
  16. Jasonni V. M., Amadori A., Santini D., Ceccarelli C., Naldi S., Flamigni C. Epidermal growth factor receptor (EGF-R) and transforming growth factor alpha (TGFA) expression in different endometrial cancers. Anticancer Res. 1995 Jul-Aug;15(4):1327–1332. [PubMed] [Google Scholar]
  17. Kleiner D. E., Jr, Tuuttila A., Tryggvason K., Stetler-Stevenson W. G. Stability analysis of latent and active 72-kDa type IV collagenase: the role of tissue inhibitor of metalloproteinases-2 (TIMP-2). Biochemistry. 1993 Feb 16;32(6):1583–1592. doi: 10.1021/bi00057a024. [DOI] [PubMed] [Google Scholar]
  18. Kohga S., Harvey S. R., Weaver R. M., Markus G. Localization of plasminogen activators in human colon cancer by immunoperoxidase staining. Cancer Res. 1985 Apr;45(4):1787–1796. [PubMed] [Google Scholar]
  19. Liabakk N. B., Talbot I., Smith R. A., Wilkinson K., Balkwill F. Matrix metalloprotease 2 (MMP-2) and matrix metalloprotease 9 (MMP-9) type IV collagenases in colorectal cancer. Cancer Res. 1996 Jan 1;56(1):190–196. [PubMed] [Google Scholar]
  20. Lichtner R. B., Kaufmann A. M., Kittmann A., Rohde-Schulz B., Walter J., Williams L., Ullrich A., Schirrmacher V., Khazaie K. Ligand mediated activation of ectopic EGF receptor promotes matrix protein adhesion and lung colonization of rat mammary adenocarcinoma cells. Oncogene. 1995 May 4;10(9):1823–1832. [PubMed] [Google Scholar]
  21. Liotta L. A., Goldfarb R. H., Brundage R., Siegal G. P., Terranova V., Garbisa S. Effect of plasminogen activator (urokinase), plasmin, and thrombin on glycoprotein and collagenous components of basement membrane. Cancer Res. 1981 Nov;41(11 Pt 1):4629–4636. [PubMed] [Google Scholar]
  22. Long B. J., Rose D. P. Invasive capacity and regulation of urokinase-type plasminogen activator in estrogen receptor (ER)-negative MDA-MB-231 human breast cancer cells, and a transfectant (S30) stably expressing ER. Cancer Lett. 1996 Feb 6;99(2):209–215. doi: 10.1016/0304-3835(95)04066-8. [DOI] [PubMed] [Google Scholar]
  23. Lund-Johansen M., Forsberg K., Bjerkvig R., Laerum O. D. Effects of growth factors on a human glioma cell line during invasion into rat brain aggregates in culture. Acta Neuropathol. 1992;84(2):190–197. doi: 10.1007/BF00311394. [DOI] [PubMed] [Google Scholar]
  24. Marcotte P. A., Kozan I. M., Dorwin S. A., Ryan J. M. The matrix metalloproteinase pump-1 catalyzes formation of low molecular weight (pro)urokinase in cultures of normal human kidney cells. J Biol Chem. 1992 Jul 15;267(20):13803–13806. [PubMed] [Google Scholar]
  25. Markus G., Camiolo S. M., Kohga S., Madeja J. M., Mittelman A. Plasminogen activator secretion of human tumors in short-term organ culture, including a comparison of primary and metastatic colon tumors. Cancer Res. 1983 Nov;43(11):5517–5525. [PubMed] [Google Scholar]
  26. McDonnell S., Navre M., Coffey R. J., Jr, Matrisian L. M. Expression and localization of the matrix metalloproteinase pump-1 (MMP-7) in human gastric and colon carcinomas. Mol Carcinog. 1991;4(6):527–533. doi: 10.1002/mc.2940040617. [DOI] [PubMed] [Google Scholar]
  27. Neal D. E., Marsh C., Bennett M. K., Abel P. D., Hall R. R., Sainsbury J. R., Harris A. L. Epidermal-growth-factor receptors in human bladder cancer: comparison of invasive and superficial tumours. Lancet. 1985 Feb 16;1(8425):366–368. doi: 10.1016/s0140-6736(85)91386-8. [DOI] [PubMed] [Google Scholar]
  28. Nishida T., Nakamura M., Murakami J., Mishima H., Otori T. Epidermal growth factor stimulates corneal epithelial cell attachment to fibronectin through a fibronectin receptor system. Invest Ophthalmol Vis Sci. 1992 Jul;33(8):2464–2469. [PubMed] [Google Scholar]
  29. Okada Y., Gonoji Y., Naka K., Tomita K., Nakanishi I., Iwata K., Yamashita K., Hayakawa T. Matrix metalloproteinase 9 (92-kDa gelatinase/type IV collagenase) from HT 1080 human fibrosarcoma cells. Purification and activation of the precursor and enzymic properties. J Biol Chem. 1992 Oct 25;267(30):21712–21719. [PubMed] [Google Scholar]
  30. Ossowski L., Clunie G., Masucci M. T., Blasi F. In vivo paracrine interaction between urokinase and its receptor: effect on tumor cell invasion. J Cell Biol. 1991 Nov;115(4):1107–1112. doi: 10.1083/jcb.115.4.1107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Pettengill O. S., Sorenson G. D., Wurster-Hill D. H., Curphey T. J., Noll W. W., Cate C. C., Maurer L. H. Isolation and growth characteristics of continuous cell lines from small-cell carcinoma of the lung. Cancer. 1980 Mar 1;45(5):906–918. doi: 10.1002/1097-0142(19800301)45:5<906::aid-cncr2820450513>3.0.co;2-h. [DOI] [PubMed] [Google Scholar]
  32. Reith A., Rucklidge G. J. Invasion of brain tissue by primary glioma: evidence for the involvement of urokinase-type plasminogen activator as an activator of type IV collagenase. Biochem Biophys Res Commun. 1992 Jul 15;186(1):348–354. doi: 10.1016/s0006-291x(05)80814-9. [DOI] [PubMed] [Google Scholar]
  33. Rømer M. U., Christiansen J., Brünner N., Spang-Thomsen M. Dissemination in athymic nude mice of lacZ transfected small cell lung cancer cells identified by X-gal staining. APMIS. 1995 Jul-Aug;103(7-8):582–587. doi: 10.1111/j.1699-0463.1995.tb01409.x. [DOI] [PubMed] [Google Scholar]
  34. Salamonsen L. A., Nagase H., Woolley D. E. Production of matrix metalloproteinase 3 (stromelysin) by cultured ovine endometrial cells. J Cell Sci. 1991 Oct;100(Pt 2):381–385. doi: 10.1242/jcs.100.2.381. [DOI] [PubMed] [Google Scholar]
  35. Sappino A. P., Busso N., Belin D., Vassalli J. D. Increase of urokinase-type plasminogen activator gene expression in human lung and breast carcinomas. Cancer Res. 1987 Aug 1;47(15):4043–4046. [PubMed] [Google Scholar]
  36. Shibamoto S., Hayakawa M., Hori T., Oku N., Miyazawa K., Kitamura N., Ito F. Hepatocyte growth factor and transforming growth factor-beta stimulate both cell growth and migration of human gastric adenocarcinoma cells. Cell Struct Funct. 1992 Jun;17(3):185–190. doi: 10.1247/csf.17.185. [DOI] [PubMed] [Google Scholar]
  37. Skriver L., Larsson L. I., Kielberg V., Nielsen L. S., Andresen P. B., Kristensen P., Danø K. Immunocytochemical localization of urokinase-type plasminogen activator in Lewis lung carcinoma. J Cell Biol. 1984 Aug;99(2):753–757. doi: 10.1083/jcb.99.2.753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Sreenath T., Matrisian L. M., Stetler-Stevenson W., Gattoni-Celli S., Pozzatti R. O. Expression of matrix metalloproteinase genes in transformed rat cell lines of high and low metastatic potential. Cancer Res. 1992 Sep 15;52(18):4942–4947. [PubMed] [Google Scholar]
  39. Testa J. E. Loss of the metastatic phenotype by a human epidermoid carcinoma cell line, HEp-3, is accompanied by increased expression of tissue inhibitor of metalloproteinase 2. Cancer Res. 1992 Oct 15;52(20):5597–5603. [PubMed] [Google Scholar]
  40. Tryggvason K., Höyhtyä M., Salo T. Proteolytic degradation of extracellular matrix in tumor invasion. Biochim Biophys Acta. 1987 Nov 25;907(3):191–217. doi: 10.1016/0304-419x(87)90006-0. [DOI] [PubMed] [Google Scholar]
  41. Veale D., Ashcroft T., Marsh C., Gibson G. J., Harris A. L. Epidermal growth factor receptors in non-small cell lung cancer. Br J Cancer. 1987 May;55(5):513–516. doi: 10.1038/bjc.1987.104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Vistica D. T., Skehan P., Scudiero D., Monks A., Pittman A., Boyd M. R. Tetrazolium-based assays for cellular viability: a critical examination of selected parameters affecting formazan production. Cancer Res. 1991 May 15;51(10):2515–2520. [PubMed] [Google Scholar]
  43. Wun T. C., Schleuning W. D., Reich E. Isolation and characterization of urokinase from human plasma. J Biol Chem. 1982 Mar 25;257(6):3276–3283. [PubMed] [Google Scholar]
  44. Xie H., Turner T., Wang M. H., Singh R. K., Siegal G. P., Wells A. In vitro invasiveness of DU-145 human prostate carcinoma cells is modulated by EGF receptor-mediated signals. Clin Exp Metastasis. 1995 Nov;13(6):407–419. doi: 10.1007/BF00118180. [DOI] [PubMed] [Google Scholar]
  45. Yano H., Shiozaki H., Kobayashi K., Yano T., Tahara H., Tamura S., Mori T. Immunohistologic detection of the epidermal growth factor receptor in human esophageal squamous cell carcinoma. Cancer. 1991 Jan 1;67(1):91–98. doi: 10.1002/1097-0142(19910101)67:1<91::aid-cncr2820670118>3.0.co;2-a. [DOI] [PubMed] [Google Scholar]
  46. Yasui W., Hata J., Yokozaki H., Nakatani H., Ochiai A., Ito H., Tahara E. Interaction between epidermal growth factor and its receptor in progression of human gastric carcinoma. Int J Cancer. 1988 Feb 15;41(2):211–217. doi: 10.1002/ijc.2910410209. [DOI] [PubMed] [Google Scholar]
  47. Yoshida K., Tsujino T., Yasui W., Kameda T., Sano T., Nakayama H., Toge T., Tahara E. Induction of growth factor-receptor and metalloproteinase genes by epidermal growth factor and/or transforming growth factor-alpha in human gastric carcinoma cell line MKN-28. Jpn J Cancer Res. 1990 Aug;81(8):793–798. doi: 10.1111/j.1349-7006.1990.tb02647.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. de Leij L., Postmus P. E., Buys C. H., Elema J. D., Ramaekers F., Poppema S., Brouwer M., van der Veen A. Y., Mesander G., The T. H. Characterization of three new variant type cell lines derived from small cell carcinoma of the lung. Cancer Res. 1985 Dec;45(12 Pt 1):6024–6033. [PubMed] [Google Scholar]
  49. de Wit P. E., Moretti S., Koenders P. G., Weterman M. A., van Muijen G. N., Gianotti B., Ruiter D. J. Increasing epidermal growth factor receptor expression in human melanocytic tumor progression. J Invest Dermatol. 1992 Aug;99(2):168–173. doi: 10.1111/1523-1747.ep12616793. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES