Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1997;75(2):196–201. doi: 10.1038/bjc.1997.33

Plateau-phase cultures: an experimental model for identifying drugs which are bioactivated within the microenvironment of solid tumours.

R M Phillips 1, M R Clayton 1
PMCID: PMC2063287  PMID: 9010026

Abstract

A commonly used technique for evaluating potential bioreductive drugs is the determination of hypoxic cytotoxicity ratios in vitro. This experimental model, however, does not accurately mimic the tumour microenvironment, as other factors (such as reduced pH, poor nutrient status, low cell proliferation rates and high catabolite concentrations) are not incorporated into the design of the assay. Plateau-phase monolayer cultures possess many of these characteristics, and this study compared the response of plateau-phase and exponentially growing human colon carcinoma cells (DLD-1) with a series of standard and bioreductive compounds. All drugs tested were added directly to conditioned medium and three patterns of chemosensitivity were observed. In the case of doxorubicin, vinblastine and 5-fluorouracil, exponentially growing cells were significantly more responsive than plateau-phase cultures. ThioTEPA and MeDZQ (2,5-diaziridinyl-1, 4-benzoquinone) were equally cytotoxic to both populations of cells. Tirapazamine (SR4233), RSU 1069, mitomycin C and EO-9, however, were preferentially toxic towards plateau-phase compared with exponentially growing cells. While the exact mechanisms responsible for these observations in each case are not known, this study suggests that plateau-phase cultures may prove to be a useful experimental model in the evaluation of drugs designed to work preferentially within the tumour microenvironment.

Full text

PDF
196

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barranco S. C., Novak J. K. Survival responses of dividing and nondividing mammalian cells after treatment with hydroxyurea, arabinosylcytosine, or adriamycin. Cancer Res. 1974 Jul;34(7):1616–1618. [PubMed] [Google Scholar]
  2. Bhuyan B. K., Fraser T. J., Day K. J. Cell proliferation kinetics and drug sensitivity of exponential and stationary populations of cultured L1210 cells. Cancer Res. 1977 Apr;37(4):1057–1063. [PubMed] [Google Scholar]
  3. Brown J. M., Giaccia A. J. Tumour hypoxia: the picture has changed in the 1990s. Int J Radiat Biol. 1994 Jan;65(1):95–102. doi: 10.1080/09553009414550131. [DOI] [PubMed] [Google Scholar]
  4. Dexter D. L., Barbosa J. A., Calabresi P. N,N-dimethylformamide-induced alteration of cell culture characteristics and loss of tumorigenicity in cultured human colon carcinoma cells. Cancer Res. 1979 Mar;39(3):1020–1025. [PubMed] [Google Scholar]
  5. Drewinko B., Patchen M., Yang L. Y., Barlogie B. Differential killing efficacy of twenty antitumor drugs on proliferating and nonproliferating human tumor cells. Cancer Res. 1981 Jun;41(6):2328–2333. [PubMed] [Google Scholar]
  6. Durand R. E., Olive P. L. Evaluation of bioreductive drugs in multicell spheroids. Int J Radiat Oncol Biol Phys. 1992;22(4):689–692. doi: 10.1016/0360-3016(92)90504-b. [DOI] [PubMed] [Google Scholar]
  7. Gerweck L. E., Seetharaman K. Cellular pH gradient in tumor versus normal tissue: potential exploitation for the treatment of cancer. Cancer Res. 1996 Mar 15;56(6):1194–1198. [PubMed] [Google Scholar]
  8. Glinos A. D., Vail J. M., Taylor B. Density-dependent regulation of growth in L cell suspension cultures. II. Synthesis of total protein and collagen in presence of rapidly declining oxygen tensions. Exp Cell Res. 1973 Apr;78(2):319–328. doi: 10.1016/0014-4827(73)90075-x. [DOI] [PubMed] [Google Scholar]
  9. Hahn G. M., Little J. B. Plateau-phase cultures of mammalian cells: an in vitro model for human cancer. Curr Top Radiat Res Q. 1972 Jul;8(1):39–43. [PubMed] [Google Scholar]
  10. Heacock C. S., Sutherland R. M. Enhanced synthesis of stress proteins caused by hypoxia and relation to altered cell growth and metabolism. Br J Cancer. 1990 Aug;62(2):217–225. doi: 10.1038/bjc.1990.264. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kennedy K. A. Hypoxic cells as specific drug targets for chemotherapy. Anticancer Drug Des. 1987 Oct;2(2):181–194. [PubMed] [Google Scholar]
  12. Kennedy K. A., McGurl J. D., Leondaridis L., Alabaster O. pH dependence of mitomycin C-induced cross-linking activity in EMT6 tumor cells. Cancer Res. 1985 Aug;45(8):3541–3547. [PubMed] [Google Scholar]
  13. Mauro F., Falpo B., Briganti G., Elli R., Zupi G. Effects of antineoplastic drugs on plateau-phase cultures of mammalian cells. I. Description of the plateau-phase system. J Natl Cancer Inst. 1974 Mar;52(3):705–713. doi: 10.1093/jnci/52.3.705. [DOI] [PubMed] [Google Scholar]
  14. O'Dwyer P. J., Yao K. S., Ford P., Godwin A. K., Clayton M. Effects of hypoxia on detoxicating enzyme activity and expression in HT29 colon adenocarcinoma cells. Cancer Res. 1994 Jun 15;54(12):3082–3087. [PubMed] [Google Scholar]
  15. Pagliacci M. C., Spinozzi F., Migliorati G., Fumi G., Smacchia M., Grignani F., Riccardi C., Nicoletti I. Genistein inhibits tumour cell growth in vitro but enhances mitochondrial reduction of tetrazolium salts: a further pitfall in the use of the MTT assay for evaluating cell growth and survival. Eur J Cancer. 1993;29A(11):1573–1577. doi: 10.1016/0959-8049(93)90297-s. [DOI] [PubMed] [Google Scholar]
  16. Phillips R. M., Bibby M. C., Double J. A. A critical appraisal of the predictive value of in vitro chemosensitivity assays. J Natl Cancer Inst. 1990 Sep 19;82(18):1457–1468. doi: 10.1093/jnci/82.18.1457. [DOI] [PubMed] [Google Scholar]
  17. Phillips R. M., Bibby M. C., Double J. A. Experimental correlations of in vitro drug sensitivity with in vivo responses to ThioTEPA in a panel of murine colon tumours. Cancer Chemother Pharmacol. 1988;21(2):168–172. doi: 10.1007/BF00257366. [DOI] [PubMed] [Google Scholar]
  18. Phillips R. M., Hulbert P. B., Bibby M. C., Sleigh N. R., Double J. A. In vitro activity of the novel indoloquinone EO-9 and the influence of pH on cytotoxicity. Br J Cancer. 1992 Mar;65(3):359–364. doi: 10.1038/bjc.1992.73. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Phillips R. M., de la Cruz A., Traver R. D., Gibson N. W. Increased activity and expression of NAD(P)H:quinone acceptor oxidoreductase in confluent cell cultures and within multicellular spheroids. Cancer Res. 1994 Jul 15;54(14):3766–3771. [PubMed] [Google Scholar]
  20. Pizao P. E., Peters G. J., Van Ark-Otte J., Smets L. A., Smitskamp-Wilms E., Winograd B., Pinedo H. M., Giaccone G. Cytotoxic effects of anticancer agents on subconfluent and multilayered postconfluent cultures. Eur J Cancer. 1993;29A(11):1566–1573. doi: 10.1016/0959-8049(93)90296-r. [DOI] [PubMed] [Google Scholar]
  21. Plumb J. A., Workman P. Unusually marked hypoxic sensitization to indoloquinone EO9 and mitomycin C in a human colon-tumour cell line that lacks DT-diaphorase activity. Int J Cancer. 1994 Jan 2;56(1):134–139. doi: 10.1002/ijc.2910560124. [DOI] [PubMed] [Google Scholar]
  22. Ross D., Beall H., Traver R. D., Siegel D., Phillips R. M., Gibson N. W. Bioactivation of quinones by DT-diaphorase, molecular, biochemical, and chemical studies. Oncol Res. 1994;6(10-11):493–500. [PubMed] [Google Scholar]
  23. Sciandra J. J., Subjeck J. R., Hughes C. S. Induction of glucose-regulated proteins during anaerobic exposure and of heat-shock proteins after reoxygenation. Proc Natl Acad Sci U S A. 1984 Aug;81(15):4843–4847. doi: 10.1073/pnas.81.15.4843. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Stratford I. J., O'Neill P., Sheldon P. W., Silver A. R., Walling J. M., Adams G. E. RSU 1069, a nitroimidazole containing an aziridine group. Bioreduction greatly increases cytotoxicity under hypoxic conditions. Biochem Pharmacol. 1986 Jan 1;35(1):105–109. doi: 10.1016/0006-2952(86)90566-6. [DOI] [PubMed] [Google Scholar]
  25. Sutherland R. M. Cell and environment interactions in tumor microregions: the multicell spheroid model. Science. 1988 Apr 8;240(4849):177–184. doi: 10.1126/science.2451290. [DOI] [PubMed] [Google Scholar]
  26. THOMLINSON R. H., GRAY L. H. The histological structure of some human lung cancers and the possible implications for radiotherapy. Br J Cancer. 1955 Dec;9(4):539–549. doi: 10.1038/bjc.1955.55. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Tannock I. F., Rotin D. Acid pH in tumors and its potential for therapeutic exploitation. Cancer Res. 1989 Aug 15;49(16):4373–4384. [PubMed] [Google Scholar]
  28. Twentyman P. R., Bleehen N. M. The sensitivity of cells in exponential and stationary phases of growth to bleomycin and to 1,3-bis(2-chloroethyl)-1-nitrosourea. Br J Cancer. 1973 Dec;28(6):500–507. doi: 10.1038/bjc.1973.179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Vaupel P., Kallinowski F., Okunieff P. Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res. 1989 Dec 1;49(23):6449–6465. [PubMed] [Google Scholar]
  30. Walton M. I., Smith P. J., Workman P. The role of NAD(P)H: quinone reductase (EC 1.6.99.2, DT-diaphorase) in the reductive bioactivation of the novel indoloquinone antitumor agent EO9. Cancer Commun. 1991 Jul;3(7):199–206. doi: 10.3727/095535491820873164. [DOI] [PubMed] [Google Scholar]
  31. Workman P. Enzyme-directed bioreductive drug development revisited: a commentary on recent progress and future prospects with emphasis on quinone anticancer agents and quinone metabolizing enzymes, particularly DT-diaphorase. Oncol Res. 1994;6(10-11):461–475. [PubMed] [Google Scholar]
  32. Workman P., Stratford I. J. The experimental development of bioreductive drugs and their role in cancer therapy. Cancer Metastasis Rev. 1993 Jun;12(2):73–82. doi: 10.1007/BF00689802. [DOI] [PubMed] [Google Scholar]
  33. Zeman E. M., Brown J. M. Pre- and post-irradiation radiosensitization by SR 4233. Int J Radiat Oncol Biol Phys. 1989 Apr;16(4):967–971. doi: 10.1016/0360-3016(89)90897-3. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES