Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1997;75(6):829–836. doi: 10.1038/bjc.1997.148

Interstitial fluid pressure in intracranial tumours in patients and in rodents.

Y Boucher 1, H Salehi 1, B Witwer 1, G R Harsh 4th 1, R K Jain 1
PMCID: PMC2063404  PMID: 9062403

Abstract

Fluid transport parameters in intracranial tumours influence the delivery of therapeutic agents and the resolution of peritumoral oedema. The tumour and cortex interstitial fluid pressure (IFP) and the cerebrospinal fluid pressure (CSFP) were measured during the growth of brain and pial surface tumours [R3230AC mammary adenocarcinoma (R3230AC) and F98 glioma (F98)] in rats. Intratumoral and intracranial pressures were also measured in rodents and patients treated with dexamethasone, mannitol and furosemide (DMF), and hypocapnia. The results show that (1) for the R3230AC on the pial surface, IFP increased with tumour volume and CSFP increased exponentially for tumours occupying a brain volume of 5% or greater; (2) in F98 with volumes of approximately 10 mm3, IFP decreased from the tumour to the cortex, whereas for tumour volumes > 16 mm3 IFP equilibrates between F98 and the cortex; (3) DMF treatment reduced the IFP of intraparenchymal tumours significantly and induced a pressure gradient from the tumour to the cortex; and (4) in 11 patients with intracranial tumours, the mean IFP was 2.0 +/- 2.5 mmHg. In conclusion, the IFP gradient between intraparenchymal tumours and the cortex decreases with tumour growth, and treatment with DMF can increase the pressure difference between the tumour and surrounding brain. The results also suggest that antioedema therapy in patients with brain tumours is responsible in part for the low tumour IFP.

Full text

PDF
829

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alberti E., Hartmann A., Schütz H. J., Schreckenberger F. The effect of large doses of dexamethasone on the cerebrospinal fluid pressure in patients with supratentorial tumors. J Neurol. 1978 Feb 14;217(3):173–181. doi: 10.1007/BF00312958. [DOI] [PubMed] [Google Scholar]
  2. Baxter L. T., Jain R. K. Transport of fluid and macromolecules in tumors. I. Role of interstitial pressure and convection. Microvasc Res. 1989 Jan;37(1):77–104. doi: 10.1016/0026-2862(89)90074-5. [DOI] [PubMed] [Google Scholar]
  3. Bell B. A., Smith M. A., Kean D. M., McGhee C. N., MacDonald H. L., Miller J. D., Barnett G. H., Tocher J. L., Douglas R. H., Best J. J. Brain water measured by magnetic resonance imaging. Correlation with direct estimation and changes after mannitol and dexamethasone. Lancet. 1987 Jan 10;1(8524):66–69. doi: 10.1016/s0140-6736(87)91908-8. [DOI] [PubMed] [Google Scholar]
  4. Boucher Y., Baxter L. T., Jain R. K. Interstitial pressure gradients in tissue-isolated and subcutaneous tumors: implications for therapy. Cancer Res. 1990 Aug 1;50(15):4478–4484. [PubMed] [Google Scholar]
  5. Boucher Y., Jain R. K. Microvascular pressure is the principal driving force for interstitial hypertension in solid tumors: implications for vascular collapse. Cancer Res. 1992 Sep 15;52(18):5110–5114. [PubMed] [Google Scholar]
  6. Boucher Y., Kirkwood J. M., Opacic D., Desantis M., Jain R. K. Interstitial hypertension in superficial metastatic melanomas in humans. Cancer Res. 1991 Dec 15;51(24):6691–6694. [PubMed] [Google Scholar]
  7. Boucher Y., Lee I., Jain R. K. Lack of general correlation between interstitial fluid pressure and oxygen partial pressure in solid tumors. Microvasc Res. 1995 Sep;50(2):175–182. doi: 10.1006/mvre.1995.1051. [DOI] [PubMed] [Google Scholar]
  8. Corbett J. J., Mehta M. P. Cerebrospinal fluid pressure in normal obese subjects and patients with pseudotumor cerebri. Neurology. 1983 Oct;33(10):1386–1388. doi: 10.1212/wnl.33.10.1386. [DOI] [PubMed] [Google Scholar]
  9. Curti B. D., Urba W. J., Alvord W. G., Janik J. E., Smith J. W., 2nd, Madara K., Longo D. L. Interstitial pressure of subcutaneous nodules in melanoma and lymphoma patients: changes during treatment. Cancer Res. 1993 May 15;53(10 Suppl):2204–2207. [PubMed] [Google Scholar]
  10. DiResta G. R., Lee J., Larson S. M., Arbit E. Characterization of neuroblastoma xenograft in rat flank. I. Growth, interstitial fluid pressure, and interstitial fluid velocity distribution profiles. Microvasc Res. 1993 Sep;46(2):158–177. doi: 10.1006/mvre.1993.1044. [DOI] [PubMed] [Google Scholar]
  11. Donato T., Shapira Y., Artru A., Powers K. Effect of mannitol on cerebrospinal fluid dynamics and brain tissue edema. Anesth Analg. 1994 Jan;78(1):58–66. doi: 10.1213/00000539-199401000-00011. [DOI] [PubMed] [Google Scholar]
  12. Gilland O., Tourtellotte W. W., O'Tauma L., Henderson W. G. Normal cerebrospinal fluid pressure. J Neurosurg. 1974 May;40(5):587–593. doi: 10.3171/jns.1974.40.5.0587. [DOI] [PubMed] [Google Scholar]
  13. Gutmann R., Leunig M., Feyh J., Goetz A. E., Messmer K., Kastenbauer E., Jain R. K. Interstitial hypertension in head and neck tumors in patients: correlation with tumor size. Cancer Res. 1992 Apr 1;52(7):1993–1995. [PubMed] [Google Scholar]
  14. Hansen T. D., Warner D. S., Traynelis V. C., Todd M. M. Plasma osmolality and brain water content in a rat glioma model. Neurosurgery. 1994 Mar;34(3):505–511. doi: 10.1227/00006123-199403000-00017. [DOI] [PubMed] [Google Scholar]
  15. Hartwell R. C., Sutton L. N. Mannitol, intracranial pressure, and vasogenic edema. Neurosurgery. 1993 Mar;32(3):444–450. [PubMed] [Google Scholar]
  16. Jain R. K., Baxter L. T. Mechanisms of heterogeneous distribution of monoclonal antibodies and other macromolecules in tumors: significance of elevated interstitial pressure. Cancer Res. 1988 Dec 15;48(24 Pt 1):7022–7032. [PubMed] [Google Scholar]
  17. Kullberg G., West K. A. Influence of corticosteroids on the ventricular fluid pressure. Acta Neurol Scand Suppl. 1965;13(Pt 2):445–452. doi: 10.1111/j.1600-0404.1965.tb01913.x. [DOI] [PubMed] [Google Scholar]
  18. Lee I., Boucher Y., Jain R. K. Nicotinamide can lower tumor interstitial fluid pressure: mechanistic and therapeutic implications. Cancer Res. 1992 Jun 1;52(11):3237–3240. [PubMed] [Google Scholar]
  19. Leenders K. L., Beaney R. P., Brooks D. J., Lammertsma A. A., Heather J. D., McKenzie C. G. Dexamethasone treatment of brain tumor patients: effects on regional cerebral blood flow, blood volume, and oxygen utilization. Neurology. 1985 Nov;35(11):1610–1616. doi: 10.1212/wnl.35.11.1610. [DOI] [PubMed] [Google Scholar]
  20. Less J. R., Posner M. C., Boucher Y., Borochovitz D., Wolmark N., Jain R. K. Interstitial hypertension in human breast and colorectal tumors. Cancer Res. 1992 Nov 15;52(22):6371–6374. [PubMed] [Google Scholar]
  21. Luce J. M., Huseby J. S., Kirk W., Butler J. A Starling resistor regulates cerebral venous outflow in dogs. J Appl Physiol Respir Environ Exerc Physiol. 1982 Dec;53(6):1496–1503. doi: 10.1152/jappl.1982.53.6.1496. [DOI] [PubMed] [Google Scholar]
  22. Lundberg N., West K. A. Leakage as a source of error in measurement of the cerebrospinal fluid pressure by lumbar puncture. Acta Neurol Scand Suppl. 1965;13(Pt 1):115–121. doi: 10.1111/j.1600-0404.1965.tb01865.x. [DOI] [PubMed] [Google Scholar]
  23. Miller J. D., Leech P. Effects of mannitol and steroid therapy on intracranial volume-pressure relationships in patients. J Neurosurg. 1975 Mar;42(3):274–281. doi: 10.3171/jns.1975.42.3.0274. [DOI] [PubMed] [Google Scholar]
  24. Muizelaar J. P., Wei E. P., Kontos H. A., Becker D. P. Mannitol causes compensatory cerebral vasoconstriction and vasodilation in response to blood viscosity changes. J Neurosurg. 1983 Nov;59(5):822–828. doi: 10.3171/jns.1983.59.5.0822. [DOI] [PubMed] [Google Scholar]
  25. Nakagawa H., Groothuis D. R., Owens E. S., Patlak C. S., Pettigrew K. D., Glasberg R. R. Dexamethasone effects on vascular volume and tissue hematocrit in experimental RG-2 gliomas and adjacent brain. J Neurooncol. 1988 Sep;6(2):157–168. doi: 10.1007/BF02327392. [DOI] [PubMed] [Google Scholar]
  26. Nathanson S. D., Nelson L. Interstitial fluid pressure in breast cancer, benign breast conditions, and breast parenchyma. Ann Surg Oncol. 1994 Jul;1(4):333–338. doi: 10.1007/BF03187139. [DOI] [PubMed] [Google Scholar]
  27. Neuwelt E. A., Barnett P. A., Ramsey F. L., Hellström I., Hellström K. E., McCormick C. I. Dexamethasone decreases the delivery of tumor-specific monoclonal antibody to both intracerebral and subcutaneous tumor xenografts. Neurosurgery. 1993 Sep;33(3):478–484. doi: 10.1227/00006123-199309000-00018. [DOI] [PubMed] [Google Scholar]
  28. Pollay M., Fullenwider C., Roberts P. A., Stevens F. A. Effect of mannitol and furosemide on blood-brain osmotic gradient and intracranial pressure. J Neurosurg. 1983 Dec;59(6):945–950. doi: 10.3171/jns.1983.59.6.0945. [DOI] [PubMed] [Google Scholar]
  29. Ravussin P., Abou-Madi M., Archer D., Chiolero R., Freeman J., Trop D., De Tribolet N. Changes in CSF pressure after mannitol in patients with and without elevated CSF pressure. J Neurosurg. 1988 Dec;69(6):869–876. doi: 10.3171/jns.1988.69.6.0869. [DOI] [PubMed] [Google Scholar]
  30. Reichman H. R., Farrell C. L., Del Maestro R. F. Effects of steroids and nonsteroid anti-inflammatory agents on vascular permeability in a rat glioma model. J Neurosurg. 1986 Aug;65(2):233–237. doi: 10.3171/jns.1986.65.2.0233. [DOI] [PubMed] [Google Scholar]
  31. Reulen H. J., Graham R., Spatz M., Klatzo I. Role of pressure gradients and bulk flow in dynamics of vasogenic brain edema. J Neurosurg. 1977 Jan;46(1):24–35. doi: 10.3171/jns.1977.46.1.0024. [DOI] [PubMed] [Google Scholar]
  32. Reulen H. J., Kreysch H. G. Measurement of brain tissue pressure in cold induced cerebral oedema. Acta Neurochir (Wien) 1973;29(1):29–40. doi: 10.1007/BF01414614. [DOI] [PubMed] [Google Scholar]
  33. Reulen H. J., Tsuyumu M., Tack A., Fenske A. R., Prioleau G. R. Clearance of edema fluid into cerebrospinal fluid. A mechanism for resolution of vasogenic brain edema. J Neurosurg. 1978 May;48(5):754–764. doi: 10.3171/jns.1978.48.5.0754. [DOI] [PubMed] [Google Scholar]
  34. Roh H. D., Boucher Y., Kalnicki S., Buchsbaum R., Bloomer W. D., Jain R. K. Interstitial hypertension in carcinoma of uterine cervix in patients: possible correlation with tumor oxygenation and radiation response. Cancer Res. 1991 Dec 15;51(24):6695–6698. [PubMed] [Google Scholar]
  35. Sundbärg G., Nordström C. H., Messeter K., Söderström S. A comparison of intraparenchymatous and intraventricular pressure recording in clinical practice. J Neurosurg. 1987 Dec;67(6):841–845. doi: 10.3171/jns.1987.67.6.0841. [DOI] [PubMed] [Google Scholar]
  36. Weiss M. H., Nulsen F. E. The effect of glucocorticoids on CSF flow in dogs. J Neurosurg. 1970 Apr;32(4):452–458. doi: 10.3171/jns.1970.32.4.0452. [DOI] [PubMed] [Google Scholar]
  37. Wiig H., Gadeholt G. Interstitial fluid pressure and hemodynamics in a sarcoma implanted in the rat tail. Microvasc Res. 1985 Mar;29(2):176–189. doi: 10.1016/0026-2862(85)90015-9. [DOI] [PubMed] [Google Scholar]
  38. Wiig H., Reed R. K. Rat brain interstitial fluid pressure measured with micropipettes. Am J Physiol. 1983 Feb;244(2):H239–H246. doi: 10.1152/ajpheart.1983.244.2.H239. [DOI] [PubMed] [Google Scholar]
  39. Yada K., Nakagawa Y., Tsuru M. Circulatory disturbance of the venous system during experimental intracranial hypertension. J Neurosurg. 1973 Dec;39(6):723–729. doi: 10.3171/jns.1973.39.6.0723. [DOI] [PubMed] [Google Scholar]
  40. Yuan F., Dellian M., Fukumura D., Leunig M., Berk D. A., Torchilin V. P., Jain R. K. Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size. Cancer Res. 1995 Sep 1;55(17):3752–3756. [PubMed] [Google Scholar]
  41. Yuan F., Salehi H. A., Boucher Y., Vasthare U. S., Tuma R. F., Jain R. K. Vascular permeability and microcirculation of gliomas and mammary carcinomas transplanted in rat and mouse cranial windows. Cancer Res. 1994 Sep 1;54(17):4564–4568. [PubMed] [Google Scholar]
  42. Zlotecki R. A., Baxter L. T., Boucher Y., Jain R. K. Pharmacologic modification of tumor blood flow and interstitial fluid pressure in a human tumor xenograft: network analysis and mechanistic interpretation. Microvasc Res. 1995 Nov;50(3):429–443. doi: 10.1006/mvre.1995.1069. [DOI] [PubMed] [Google Scholar]
  43. Zlotecki R. A., Boucher Y., Lee I., Baxter L. T., Jain R. K. Effect of angiotensin II induced hypertension on tumor blood flow and interstitial fluid pressure. Cancer Res. 1993 Jun 1;53(11):2466–2468. [PubMed] [Google Scholar]
  44. Znati C. A., Rosenstein M., Boucher Y., Epperly M. W., Bloomer W. D., Jain R. K. Effect of radiation on interstitial fluid pressure and oxygenation in a human tumor xenograft. Cancer Res. 1996 Mar 1;56(5):964–968. [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES