Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1992 Aug;174(16):5450–5453. doi: 10.1128/jb.174.16.5450-5453.1992

Identification of a putative eukaryotic-like protein kinase family in the developmental bacterium Myxococcus xanthus.

W Zhang 1, J Munoz-Dorado 1, M Inouye 1, S Inouye 1
PMCID: PMC206385  PMID: 1644772

Abstract

Myxococcus xanthus is a gram-negative bacterium which, upon starvation, undergoes a spectacular developmental cycle culminating in the formation of spore-filled fruiting bodies. We recently characterized a protein serine-threonine kinase (Pkn1) that is required for normal development (J. Munoz-Dorado, S. Inouye, and M. Inouye, Cell 67:995-1006, 1991). pkn1 was cloned by polymerase chain reaction amplification with primers designed from conserved sequences in eukaryotic protein kinases. In this study, a fragment of the pkn1 gene and an oligonucleotide corresponding to another highly conserved region were employed as probes for Southern blot analyses, which indicated that there are at least 26 putative kinase genes in M. xanthus. Most of the putative kinase genes were cloned, and complete or partial sequencing of eight clones revealed that they indeed contained highly conserved sequences present in eukaryotic kinases. These results suggest that complex kinase cascades similar to those described for eukaryotes might be involved in regulation of the M. xanthus life cycle.

Full text

PDF
5450

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Devreotes P. Dictyostelium discoideum: a model system for cell-cell interactions in development. Science. 1989 Sep 8;245(4922):1054–1058. doi: 10.1126/science.2672337. [DOI] [PubMed] [Google Scholar]
  2. Dhundale A., Furuichi T., Inouye M., Inouye S. Mutations that affect production of branched RNA-linked msDNA in Myxococcus xanthus. J Bacteriol. 1988 Dec;170(12):5620–5624. doi: 10.1128/jb.170.12.5620-5624.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Hanks S. K., Quinn A. M. Protein kinase catalytic domain sequence database: identification of conserved features of primary structure and classification of family members. Methods Enzymol. 1991;200:38–62. doi: 10.1016/0076-6879(91)00126-h. [DOI] [PubMed] [Google Scholar]
  4. Haribabu B., Dottin R. P. Identification of a protein kinase multigene family of Dictyostelium discoideum: molecular cloning and expression of a cDNA encoding a developmentally regulated protein kinase. Proc Natl Acad Sci U S A. 1991 Feb 15;88(4):1115–1119. doi: 10.1073/pnas.88.4.1115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hunter T. Protein kinase classification. Methods Enzymol. 1991;200:3–37. doi: 10.1016/0076-6879(91)00125-g. [DOI] [PubMed] [Google Scholar]
  6. Knighton D. R., Zheng J. H., Ten Eyck L. F., Ashford V. A., Xuong N. H., Taylor S. S., Sowadski J. M. Crystal structure of the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase. Science. 1991 Jul 26;253(5018):407–414. doi: 10.1126/science.1862342. [DOI] [PubMed] [Google Scholar]
  7. Kohara Y., Akiyama K., Isono K. The physical map of the whole E. coli chromosome: application of a new strategy for rapid analysis and sorting of a large genomic library. Cell. 1987 Jul 31;50(3):495–508. doi: 10.1016/0092-8674(87)90503-4. [DOI] [PubMed] [Google Scholar]
  8. Muñoz-Dorado J., Inouye S., Inouye M. A gene encoding a protein serine/threonine kinase is required for normal development of M. xanthus, a gram-negative bacterium. Cell. 1991 Nov 29;67(5):995–1006. doi: 10.1016/0092-8674(91)90372-6. [DOI] [PubMed] [Google Scholar]
  9. Rigby P. W., Dieckmann M., Rhodes C., Berg P. Labeling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. J Mol Biol. 1977 Jun 15;113(1):237–251. doi: 10.1016/0022-2836(77)90052-3. [DOI] [PubMed] [Google Scholar]
  10. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Shimkets L. J. Social and developmental biology of the myxobacteria. Microbiol Rev. 1990 Dec;54(4):473–501. doi: 10.1128/mr.54.4.473-501.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
  13. Stock J. B., Ninfa A. J., Stock A. M. Protein phosphorylation and regulation of adaptive responses in bacteria. Microbiol Rev. 1989 Dec;53(4):450–490. doi: 10.1128/mr.53.4.450-490.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Vieira J., Messing J. The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene. 1982 Oct;19(3):259–268. doi: 10.1016/0378-1119(82)90015-4. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES