Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1992 Feb;174(4):1213–1221. doi: 10.1128/jb.174.4.1213-1221.1992

Mutagenesis of ribosomal protein S8 from Escherichia coli: defects in regulation of the spc operon.

I Wower 1, M P Kowaleski 1, L E Sears 1, R A Zimmermann 1
PMCID: PMC206414  PMID: 1735715

Abstract

The structural features of Escherichia coli ribosomal protein S8 that are involved in translational regulation of spc operon expression and, therefore, in its interaction with RNA have been investigated by use of a genetic approach. The rpsH gene, which encodes protein S8, was first inserted into an expression vector under the control of the lac promoter and subsequently mutagenized with methoxylamine or nitrous acid. A screening procedure based on the regulatory role of S8 was used to identify mutants that were potentially defective in their ability to associate with spc operon mRNA and, by inference, 16S mRNA. In this way, we isolated 39 variants of the S8 gene containing alterations at 34 different sites, including 37 that led to single amino acid substitutions and 2 that generated premature termination codons. As the mutations were distributed throughout the polypeptide chain, our results indicate that amino acid residues important for the structural integrity of the RNA-binding domain are not localized to a single segment. Nonetheless, the majority were located within three short sequences at the N terminus, middle, and C terminus that are phylogenetically conserved among all known eubacterial and chloroplast versions of this protein. We conclude that these sites encompass the main structural determinants required for the interaction of protein S8 with RNA.

Full text

PDF
1213

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen G., Capasso R., Gualerzi C. Identification of the amino acid residues of proteins S5 and S8 adjacent to each other in the 30 S ribosomal subunit of Escherichia coli. J Biol Chem. 1979 Oct 10;254(19):9800–9806. [PubMed] [Google Scholar]
  2. Allen G., Wittmann-Liebold B. The amino acid sequence of the ribosomal protein S8 of Escherichia coli. Hoppe Seylers Z Physiol Chem. 1978 Nov;359(11):1509–1525. doi: 10.1515/bchm2.1978.359.2.1509. [DOI] [PubMed] [Google Scholar]
  3. Bowie J. U., Sauer R. T. Identifying determinants of folding and activity for a protein of unknown structure. Proc Natl Acad Sci U S A. 1989 Apr;86(7):2152–2156. doi: 10.1073/pnas.86.7.2152. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bruce J., Firpo E. J., Schaup H. W. Ribosomal protein-nucleic acid interactions. I. Isolation of a polypeptide fragment from 30S protein S8 which binds to 16S rRNA. Nucleic Acids Res. 1977 Oct;4(10):3327–3340. doi: 10.1093/nar/4.10.3327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cerretti D. P., Mattheakis L. C., Kearney K. R., Vu L., Nomura M. Translational regulation of the spc operon in Escherichia coli. Identification and structural analysis of the target site for S8 repressor protein. J Mol Biol. 1988 Nov 20;204(2):309–329. doi: 10.1016/0022-2836(88)90578-5. [DOI] [PubMed] [Google Scholar]
  6. Chou P. Y., Fasman G. D. Prediction of the secondary structure of proteins from their amino acid sequence. Adv Enzymol Relat Areas Mol Biol. 1978;47:45–148. doi: 10.1002/9780470122921.ch2. [DOI] [PubMed] [Google Scholar]
  7. Dabbs E. R. Mutational alterations in 50 proteins of the Escherichia coli ribosome. Mol Gen Genet. 1978 Sep 20;165(1):73–78. doi: 10.1007/BF00270378. [DOI] [PubMed] [Google Scholar]
  8. Dabbs E. R., Wittman H. G. A strain of Escherichia coli which gives rise to mutations in a large number of ribosomal proteins. Mol Gen Genet. 1976 Dec 22;149(3):303–309. doi: 10.1007/BF00268532. [DOI] [PubMed] [Google Scholar]
  9. Daya-Grosjean L., Reinbolt J., Pongs O., Garrett R. A. A study of the regions of ribosomal proteins S4, S8, S15 and S20 that interact with 16 S RNA of Escherichia coli. FEBS Lett. 1974 Aug 30;44(3):253–256. doi: 10.1016/0014-5793(74)81151-8. [DOI] [PubMed] [Google Scholar]
  10. Dean D., Yates J. L., Nomura M. Escherichia coli ribosomal protein S8 feedback regulates part of spc operon. Nature. 1981 Jan 1;289(5793):89–91. doi: 10.1038/289089a0. [DOI] [PubMed] [Google Scholar]
  11. Dijk J., Littlechild J. A., Freund A. M., Pouyet J., Daune M., Provencher S. W. The secondary structure of salt-extracted ribosomal proteins from Escherichia coli as studied by circular dichroic spectroscopy. Biochim Biophys Acta. 1986 Nov 21;874(2):227–234. doi: 10.1016/0167-4838(86)90122-6. [DOI] [PubMed] [Google Scholar]
  12. Garnier J., Osguthorpe D. J., Robson B. Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. J Mol Biol. 1978 Mar 25;120(1):97–120. doi: 10.1016/0022-2836(78)90297-8. [DOI] [PubMed] [Google Scholar]
  13. Geyl D., Böck A., Wittmann H. G. Cold-sensitive growth of a mutant of Escherichia coli with an altered ribosomal protein S8: analysis of revertants. Mol Gen Genet. 1977 Apr 29;152(3):331–336. doi: 10.1007/BF00693088. [DOI] [PubMed] [Google Scholar]
  14. Giri L., Littlechild J., Dijk J. Hydrodynamic studies on the Escherichia coli robosomal proteins S8 and L6, prepared by two different methods. FEBS Lett. 1977 Jul 15;79(2):238–244. doi: 10.1016/0014-5793(77)80795-3. [DOI] [PubMed] [Google Scholar]
  15. Gregory R. J., Cahill P. B., Thurlow D. L., Zimmermann R. A. Interaction of Escherichia coli ribosomal protein S8 with its binding sites in ribosomal RNA and messenger RNA. J Mol Biol. 1988 Nov 20;204(2):295–307. doi: 10.1016/0022-2836(88)90577-3. [DOI] [PubMed] [Google Scholar]
  16. Gregory R. J., Zeller M. L., Thurlow D. L., Gourse R. L., Stark M. J., Dahlberg A. E., Zimmermann R. A. Interaction of ribosomal proteins S6, S8, S15 and S18 with the central domain of 16 S ribosomal RNA from Escherichia coli. J Mol Biol. 1984 Sep 15;178(2):287–302. doi: 10.1016/0022-2836(84)90145-1. [DOI] [PubMed] [Google Scholar]
  17. Gregory R. J., Zimmermann R. A. Site-directed mutagenesis of the binding site for ribosomal protein S8 within 16S ribosomal RNA from Escherichia coli. Nucleic Acids Res. 1986 Jul 25;14(14):5761–5776. doi: 10.1093/nar/14.14.5761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Harrison S. C., Aggarwal A. K. DNA recognition by proteins with the helix-turn-helix motif. Annu Rev Biochem. 1990;59:933–969. doi: 10.1146/annurev.bi.59.070190.004441. [DOI] [PubMed] [Google Scholar]
  19. Hecht M. H., Nelson H. C., Sauer R. T. Mutations in lambda repressor's amino-terminal domain: implications for protein stability and DNA binding. Proc Natl Acad Sci U S A. 1983 May;80(9):2676–2680. doi: 10.1073/pnas.80.9.2676. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Held W. A., Ballou B., Mizushima S., Nomura M. Assembly mapping of 30 S ribosomal proteins from Escherichia coli. Further studies. J Biol Chem. 1974 May 25;249(10):3103–3111. [PubMed] [Google Scholar]
  21. Isackson P. J., Bertrand K. P. Dominant negative mutations in the Tn10 tet repressor: evidence for use of the conserved helix-turn-helix motif in DNA binding. Proc Natl Acad Sci U S A. 1985 Sep;82(18):6226–6230. doi: 10.1073/pnas.82.18.6226. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Isono K., Krauss J., Hirota Y. Isolation and characterization of temperature-sensitive mutants of Escherichia coli with altered ribosomal proteins. Mol Gen Genet. 1976 Dec 22;149(3):297–302. doi: 10.1007/BF00268531. [DOI] [PubMed] [Google Scholar]
  23. Kadonaga J. T., Knowles J. R. A simple and efficient method for chemical mutagenesis of DNA. Nucleic Acids Res. 1985 Mar 11;13(5):1733–1745. doi: 10.1093/nar/13.5.1733. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kimura J., Kimura M. The primary structures of ribosomal proteins S14 and S16 from the archaebacterium Halobacterium marismortui. Comparison with eubacterial and eukaryotic ribosomal proteins. J Biol Chem. 1987 Sep 5;262(25):12150–12157. [PubMed] [Google Scholar]
  25. Lemieux G., Lefevre J. F., Daune M. Effect of reconstitution conditions on the structure of Escherichia coli 30-S ribosomol-subunit components. Eur J Biochem. 1974 Nov 1;49(1):185–194. doi: 10.1111/j.1432-1033.1974.tb03824.x. [DOI] [PubMed] [Google Scholar]
  26. Markmann-Mulisch U., Subramanian A. R. Nucleotide sequence and linkage map position of the genes for ribosomal proteins L14 and S8 in the maize chloroplast genome. Eur J Biochem. 1988 Jan 4;170(3):507–514. doi: 10.1111/j.1432-1033.1988.tb13728.x. [DOI] [PubMed] [Google Scholar]
  27. Mattaj I. W. A binding consensus: RNA-protein interactions in splicing, snRNPs, and sex. Cell. 1989 Apr 7;57(1):1–3. doi: 10.1016/0092-8674(89)90164-5. [DOI] [PubMed] [Google Scholar]
  28. Mattheakis L. C., Nomura M. Feedback regulation of the spc operon in Escherichia coli: translational coupling and mRNA processing. J Bacteriol. 1988 Oct;170(10):4484–4492. doi: 10.1128/jb.170.10.4484-4492.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Mougel M., Ehresmann B., Ehresmann C. Binding of Escherichia coli ribosomal protein S8 to 16S rRNA: kinetic and thermodynamic characterization. Biochemistry. 1986 May 20;25(10):2756–2765. doi: 10.1021/bi00358a003. [DOI] [PubMed] [Google Scholar]
  30. Mougel M., Eyermann F., Westhof E., Romby P., Expert-Bezançon A., Ebel J. P., Ehresmann B., Ehresmann C. Binding of Escherichia coli ribosomal protein S8 to 16 S rRNA. A model for the interaction and the tertiary structure of the RNA binding site. J Mol Biol. 1987 Nov 5;198(1):91–107. doi: 10.1016/0022-2836(87)90460-8. [DOI] [PubMed] [Google Scholar]
  31. Muto A., Kawauchi Y., Yamao F., Osawa S. Preferential use of A- and U-rich codons for Mycoplasma capricolum ribosomal proteins S8 and L6. Nucleic Acids Res. 1984 Nov 12;12(21):8209–8217. doi: 10.1093/nar/12.21.8209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Myers R. M., Lerman L. S., Maniatis T. A general method for saturation mutagenesis of cloned DNA fragments. Science. 1985 Jul 19;229(4710):242–247. doi: 10.1126/science.2990046. [DOI] [PubMed] [Google Scholar]
  33. Müller R., Garrett R. A., Noller H. F. The structure of the RNA binding site of ribosomal proteins S8 and S15. J Biol Chem. 1979 May 25;254(10):3873–3878. [PubMed] [Google Scholar]
  34. Nomura M., Gourse R., Baughman G. Regulation of the synthesis of ribosomes and ribosomal components. Annu Rev Biochem. 1984;53:75–117. doi: 10.1146/annurev.bi.53.070184.000451. [DOI] [PubMed] [Google Scholar]
  35. Ohama T., Muto A., Osawa S. Spectinomycin operon of Micrococcus luteus: evolutionary implications of organization and novel codon usage. J Mol Evol. 1989 Nov;29(5):381–395. doi: 10.1007/BF02602908. [DOI] [PubMed] [Google Scholar]
  36. Pakula A. A., Sauer R. T. Genetic analysis of protein stability and function. Annu Rev Genet. 1989;23:289–310. doi: 10.1146/annurev.ge.23.120189.001445. [DOI] [PubMed] [Google Scholar]
  37. Pakula A. A., Young V. B., Sauer R. T. Bacteriophage lambda cro mutations: effects on activity and intracellular degradation. Proc Natl Acad Sci U S A. 1986 Dec;83(23):8829–8833. doi: 10.1073/pnas.83.23.8829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Parsell D. A., Sauer R. T. The structural stability of a protein is an important determinant of its proteolytic susceptibility in Escherichia coli. J Biol Chem. 1989 May 5;264(13):7590–7595. [PubMed] [Google Scholar]
  39. Paterakis K., Littlechild J. Structural domains of ribosomal protein S8 and their relationship to ribosomal RNA binding. FEBS Lett. 1982 Nov 29;149(2):328–333. doi: 10.1016/0014-5793(82)81125-3. [DOI] [PubMed] [Google Scholar]
  40. Reiter W. D., Palm P., Voos W., Kaniecki J., Grampp B., Schulz W., Zillig W. Putative promoter elements for the ribosomal RNA genes of the thermoacidophilic archaebacterium Sulfolobus sp. strain B12. Nucleic Acids Res. 1987 Jul 24;15(14):5581–5595. doi: 10.1093/nar/15.14.5581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Rossmann M. G., Argos P. Protein folding. Annu Rev Biochem. 1981;50:497–532. doi: 10.1146/annurev.bi.50.070181.002433. [DOI] [PubMed] [Google Scholar]
  42. Rould M. A., Perona J. J., Söll D., Steitz T. A. Structure of E. coli glutaminyl-tRNA synthetase complexed with tRNA(Gln) and ATP at 2.8 A resolution. Science. 1989 Dec 1;246(4934):1135–1142. doi: 10.1126/science.2479982. [DOI] [PubMed] [Google Scholar]
  43. Ruff M., Krishnaswamy S., Boeglin M., Poterszman A., Mitschler A., Podjarny A., Rees B., Thierry J. C., Moras D. Class II aminoacyl transfer RNA synthetases: crystal structure of yeast aspartyl-tRNA synthetase complexed with tRNA(Asp). Science. 1991 Jun 21;252(5013):1682–1689. doi: 10.1126/science.2047877. [DOI] [PubMed] [Google Scholar]
  44. Russel M., Kidd S., Kelley M. R. An improved filamentous helper phage for generating single-stranded plasmid DNA. Gene. 1986;45(3):333–338. doi: 10.1016/0378-1119(86)90032-6. [DOI] [PubMed] [Google Scholar]
  45. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Serdyuk I. N., Zaccai G., Spirin A. S. Globular conformation of some ribosomal proteins in solution. FEBS Lett. 1978 Oct 15;94(2):349–352. doi: 10.1016/0014-5793(78)80974-0. [DOI] [PubMed] [Google Scholar]
  47. Solnick D. An adenovirus mutant defective in splicing RNA from early region 1A. Nature. 1981 Jun 11;291(5815):508–510. doi: 10.1038/291508a0. [DOI] [PubMed] [Google Scholar]
  48. Svensson P., Changchien L. M., Craven G. R., Noller H. F. Interaction of ribosomal proteins, S6, S8, S15 and S18 with the central domain of 16 S ribosomal RNA. J Mol Biol. 1988 Mar 20;200(2):301–308. doi: 10.1016/0022-2836(88)90242-2. [DOI] [PubMed] [Google Scholar]
  49. Tanaka M., Wakasugi T., Sugita M., Shinozaki K., Sugiura M. Genes for the eight ribosomal proteins are clustered on the chloroplast genome of tobacco (Nicotiana tabacum): similarity to the S10 and spc operons of Escherichia coli. Proc Natl Acad Sci U S A. 1986 Aug;83(16):6030–6034. doi: 10.1073/pnas.83.16.6030. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Thurlow D. L., Ehresmann C., Ehresmann B. Nucleotides in 16S rRNA that are required in unmodified form for features recognized by ribosomal protein S8. Nucleic Acids Res. 1983 Oct 11;11(19):6787–6802. doi: 10.1093/nar/11.19.6787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Wickens M. P., Dahlberg J. E. RNA-protein interactions. Cell. 1987 Nov 6;51(3):339–342. doi: 10.1016/0092-8674(87)90629-5. [DOI] [PubMed] [Google Scholar]
  52. Wittmann H. G., Stöffler G. Alteration of ribosomal proteins in revertants of a valyl-tRNA synthetase mutant of Escherichia coli. Mol Gen Genet. 1975 Dec 9;141(4):317–329. doi: 10.1007/BF00331453. [DOI] [PubMed] [Google Scholar]
  53. Wower I., Brimacombe R. The localization of multiple sites on 16S RNA which are cross-linked to proteins S7 and S8 in Escherichia coli 30S ribosomal subunits by treatment with 2-iminothiolane. Nucleic Acids Res. 1983 Mar 11;11(5):1419–1437. doi: 10.1093/nar/11.5.1419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Yates J. L., Arfsten A. E., Nomura M. In vitro expression of Escherichia coli ribosomal protein genes: autogenous inhibition of translation. Proc Natl Acad Sci U S A. 1980 Apr;77(4):1837–1841. doi: 10.1073/pnas.77.4.1837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Zagursky R. J., Berman M. L. Cloning vectors that yield high levels of single-stranded DNA for rapid DNA sequencing. Gene. 1984 Feb;27(2):183–191. doi: 10.1016/0378-1119(84)90139-2. [DOI] [PubMed] [Google Scholar]
  56. Zimmermann R. A., Singh-Bergmann K. Binding sites for ribosomal proteins S8 and S15 in the 16 S RNA of Escherichia coli. Biochim Biophys Acta. 1979 Jul 26;563(2):422–431. doi: 10.1016/0005-2787(79)90061-3. [DOI] [PubMed] [Google Scholar]
  57. Zubke W., Stadler H., Ehrlich R., Stöffler G., Wittmann H. G., Apirion D. Improved electrophoretic and immunochemical techniques for the identification and characterization of mutant proteins, applied to ribosomal protein S8 in Escherichia coli mutants. Mol Gen Genet. 1977 Dec 30;158(2):129–139. doi: 10.1007/BF00268305. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES