Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1992 Feb;174(4):1299–1306. doi: 10.1128/jb.174.4.1299-1306.1992

Analysis of the Bacillus subtilis tyrS gene: conservation of a regulatory sequence in multiple tRNA synthetase genes.

T M Henkin 1, B L Glass 1, F J Grundy 1
PMCID: PMC206425  PMID: 1735721

Abstract

The Bacillus subtilis tyrS gene, which encodes tyrosyl-tRNA synthetase (TyrTS), was isolated, and its nucleotide sequence was determined. The cloned gene was shown to complement an Escherichia coli tyrS (Ts) mutant. The predicted amino acid sequence exhibited 70% identity to that of Bacillus stearothermophilus TyrTS and 55% identity to that of E. coli TyrTS, while identity to a second cryptic B. subtilis TyrTS gene, designated tyrZ, was only 27%. Primer extension analysis indicated that tyrS transcription initiated at a vegetative promoter sequence located 300 nucleotides upstream of the AUG start codon. The mRNA leader region was found to contain an inverted repeat sequence resembling a transcriptional terminator. Expression of a transcriptional tyrS-lacZ fusion was found to be induced by starvation for tyrosine in a tyrosine auxotroph (tyrA1). Transcription initiation was unaffected by tyrosine starvation. Deletion of the terminator region in a tyrS-lacZ fusion resulted in high-level constitutive expression. Immediately preceding the putative terminator was sequence element found to be conserved in the upstream region of a number of Bacillus tRNA synthetase genes as well as in the ilv-leu biosynthetic operon; mutation of this element in tyrS resulted in low-level uninducible expression. The conservation of this sequence element suggests that aminoacyl-tRNA synthetase genes and the ilv-leu operon may be regulated by a common mechanism in Bacillus spp.

Full text

PDF
1299

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barker D. G., Bruton C. J., Winter G. The tyrosyl-tRNA synthetase from Escherichia coli. Complete nucleotide sequence of the structural gene. FEBS Lett. 1982 Dec 27;150(2):419–423. doi: 10.1016/0014-5793(82)80781-3. [DOI] [PubMed] [Google Scholar]
  2. Barstow D. A., Sharman A. F., Atkinson T., Minton N. P. Cloning and complete nucleotide sequence of the Bacillus stearothermophilus tryptophanyl tRNA synthetase gene. Gene. 1986;46(1):37–45. doi: 10.1016/0378-1119(86)90164-2. [DOI] [PubMed] [Google Scholar]
  3. Bedouelle H. Recognition of tRNA(Tyr) by tyrosyl-tRNA synthetase. Biochimie. 1990 Aug;72(8):589–598. doi: 10.1016/0300-9084(90)90122-w. [DOI] [PubMed] [Google Scholar]
  4. Bedouelle H., Winter G. A model of synthetase/transfer RNA interaction as deduced by protein engineering. 1986 Mar 27-Apr 2Nature. 320(6060):371–373. doi: 10.1038/320371a0. [DOI] [PubMed] [Google Scholar]
  5. Brakhage A. A., Wozny M., Putzer H. Structure and nucleotide sequence of the Bacillus subtilis phenylalanyl-tRNA synthetase genes. Biochimie. 1990 Oct;72(10):725–734. doi: 10.1016/0300-9084(90)90157-c. [DOI] [PubMed] [Google Scholar]
  6. Brick P., Bhat T. N., Blow D. M. Structure of tyrosyl-tRNA synthetase refined at 2.3 A resolution. Interaction of the enzyme with the tyrosyl adenylate intermediate. J Mol Biol. 1989 Jul 5;208(1):83–98. doi: 10.1016/0022-2836(89)90090-9. [DOI] [PubMed] [Google Scholar]
  7. Chow K. C., Wong J. T. Cloning and nucleotide sequence of the structural gene coding for Bacillus subtilis tryptophanyl-tRNA synthetase. Gene. 1988 Dec 20;73(2):537–543. doi: 10.1016/0378-1119(88)90518-5. [DOI] [PubMed] [Google Scholar]
  8. Clark R. L., Neidhardt F. C. Roles of the two lysyl-tRNA synthetases of Escherichia coli: analysis of nucleotide sequences and mutant behavior. J Bacteriol. 1990 Jun;172(6):3237–3243. doi: 10.1128/jb.172.6.3237-3243.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dale B. A., Nester E. W. Regulation of tyrosyl-transfer ribonucleic acid synthetase in Bacillus subtilis. J Bacteriol. 1971 Oct;108(1):586–588. doi: 10.1128/jb.108.1.586-588.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Eriani G., Delarue M., Poch O., Gangloff J., Moras D. Partition of tRNA synthetases into two classes based on mutually exclusive sets of sequence motifs. Nature. 1990 Sep 13;347(6289):203–206. doi: 10.1038/347203a0. [DOI] [PubMed] [Google Scholar]
  11. Fersht A. R. Dissection of the structure and activity of the tyrosyl-tRNA synthetase by site-directed mutagenesis. Biochemistry. 1987 Dec 15;26(25):8031–8037. doi: 10.1021/bi00399a001. [DOI] [PubMed] [Google Scholar]
  12. Fisher S. H., Rosenkrantz M. S., Sonenshein A. L. Glutamine synthetase gene of Bacillus subtilis. Gene. 1984 Dec;32(3):427–438. doi: 10.1016/0378-1119(84)90018-0. [DOI] [PubMed] [Google Scholar]
  13. Glaser P., Kunst F., Débarbouillé M., Vertès A., Danchin A., Dedonder R. A gene encoding a tyrosine tRNA synthetase is located near sacS in Bacillus subtilis. DNA Seq. 1991;1(4):251–261. doi: 10.3109/10425179109020780. [DOI] [PubMed] [Google Scholar]
  14. Grundy F. J., Henkin T. M. Cloning and analysis of the Bacillus subtilis rpsD gene, encoding ribosomal protein S4. J Bacteriol. 1990 Nov;172(11):6372–6379. doi: 10.1128/jb.172.11.6372-6379.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Grundy F. J., Henkin T. M. The rpsD gene, encoding ribosomal protein S4, is autogenously regulated in Bacillus subtilis. J Bacteriol. 1991 Aug;173(15):4595–4602. doi: 10.1128/jb.173.15.4595-4602.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Henkin T. M., Chambliss G. H. Genetic mapping of a mutation causing an alteration in Bacillus subtilis ribosomal protein S4. Mol Gen Genet. 1984;193(2):364–369. doi: 10.1007/BF00330694. [DOI] [PubMed] [Google Scholar]
  17. Henkin T. M., Sonenshein A. L. Mutations of the Escherichia coli lacUV5 promoter resulting in increased expression in Bacillus subtilis. Mol Gen Genet. 1987 Oct;209(3):467–474. doi: 10.1007/BF00331151. [DOI] [PubMed] [Google Scholar]
  18. Jones M. D., Lowe D. M., Borgford T., Fersht A. R. Natural variation of tyrosyl-tRNA synthetase and comparison with engineered mutants. Biochemistry. 1986 Apr 22;25(8):1887–1891. doi: 10.1021/bi00356a008. [DOI] [PubMed] [Google Scholar]
  19. McLaughlin J. R., Murray C. L., Rabinowitz J. C. Unique features in the ribosome binding site sequence of the gram-positive Staphylococcus aureus beta-lactamase gene. J Biol Chem. 1981 Nov 10;256(21):11283–11291. [PubMed] [Google Scholar]
  20. Mechulam Y., Schmitt E., Panvert M., Schmitter J. M., Lapadat-Tapolsky M., Meinnel T., Dessen P., Blanquet S., Fayat G. Methionyl-tRNA synthetase from Bacillus stearothermophilus: structural and functional identities with the Escherichia coli enzyme. Nucleic Acids Res. 1991 Jul 11;19(13):3673–3681. doi: 10.1093/nar/19.13.3673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Moine H., Romby P., Springer M., Grunberg-Manago M., Ebel J. P., Ehresmann C., Ehresmann B. Messenger RNA structure and gene regulation at the translational level in Escherichia coli: the case of threonine:tRNAThr ligase. Proc Natl Acad Sci U S A. 1988 Nov;85(21):7892–7896. doi: 10.1073/pnas.85.21.7892. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Putzer H., Brakhage A. A., Grunberg-Manago M. Independent genes for two threonyl-tRNA synthetases in Bacillus subtilis. J Bacteriol. 1990 Aug;172(8):4593–4602. doi: 10.1128/jb.172.8.4593-4602.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Rosenberg M., Court D. Regulatory sequences involved in the promotion and termination of RNA transcription. Annu Rev Genet. 1979;13:319–353. doi: 10.1146/annurev.ge.13.120179.001535. [DOI] [PubMed] [Google Scholar]
  24. Waye M. M., Winter G. A transcription terminator in the 5' non-coding region of the tyrosyl tRNA synthetase gene from Bacillus stearothermophilus. Eur J Biochem. 1986 Aug 1;158(3):505–510. doi: 10.1111/j.1432-1033.1986.tb09783.x. [DOI] [PubMed] [Google Scholar]
  25. Wei Y. G., Surzycki S. J. Screening recombinant clones containing sequences homologous to Escherichia coli genes using single-stranded bacteriophage vector. Gene. 1986;48(2-3):251–256. doi: 10.1016/0378-1119(86)90083-1. [DOI] [PubMed] [Google Scholar]
  26. Winter G., Koch G. L., Hartley B. S., Barker D. G. The amino acid sequence of the tyrosyl-tRNA synthetase from Bacillus stearothermophilus. Eur J Biochem. 1983 May 2;132(2):383–387. doi: 10.1111/j.1432-1033.1983.tb07374.x. [DOI] [PubMed] [Google Scholar]
  27. Wu J. J., Howard M. G., Piggot P. J. Regulation of transcription of the Bacillus subtilis spoIIA locus. J Bacteriol. 1989 Feb;171(2):692–698. doi: 10.1128/jb.171.2.692-698.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]
  29. Zuber P., Losick R. Role of AbrB in Spo0A- and Spo0B-dependent utilization of a sporulation promoter in Bacillus subtilis. J Bacteriol. 1987 May;169(5):2223–2230. doi: 10.1128/jb.169.5.2223-2230.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES