Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1992 Sep;174(17):5686–5692. doi: 10.1128/jb.174.17.5686-5692.1992

A novel lactococcal bacteriocin whose activity depends on the complementary action of two peptides.

J Nissen-Meyer 1, H Holo 1, L S Håvarstein 1, K Sletten 1, I F Nes 1
PMCID: PMC206516  PMID: 1512201

Abstract

A lactococcal bacteriocin, termed lactococcin G, was purified to homogeneity by a simple four-step purification procedure that includes ammonium sulfate precipitation, binding to a cation exchanger and octyl-Sepharose CL-4B, and reverse-phase chromatography. The final yield was about 20%, and nearly a 7,000-fold increase in the specific activity was obtained. The bacteriocin activity was associated with three peptides, termed alpha 1, alpha 2, and beta, which were separated by reverse-phase chromatography. Judging from their amino acid sequences, alpha 1 and alpha 2 were the same gene product. Differences in their configurations presumably resulted in alpha 2 having a slightly lower affinity for the reverse-phase column than alpha 1 and a reduced bacteriocin activity when combined with beta. Bacteriocin activity required the complementary action of both the alpha and the beta peptides. When neither alpha 1 nor beta was in excess, about 0.3 nM alpha 1 and 0.04 nM beta induced 50% growth inhibition, suggesting that they might interact in a 7:1 or 8:1 ratio. As judged by the amino acid sequence, alpha 1 has an isoelectric point of 10.9, an extinction coefficient of 1.3 x 10(4) M-1 cm-1, and a molecular weight of 4,346 (39 amino acid residues long). Similarly, beta has an isoelectric point of 10.4, an extinction coefficient of 2.4 x 10(4) M-1 cm-1, and a molecular weight of 4110 (35 amino acid residues long). Molecular weights of 4,376 and 4,109 for alpha 1 and beta, respectively, were obtained by mass spectrometry. The N-terminal halves of both the alpha and beta peptides may form amphiphilic alpha-helices, suggesting that the peptides are pore-forming toxins that create cell membrane channels through a "barrel-stave" mechanism. The C-terminal halves of both peptides consist largely of polar amino acids.

Full text

PDF
5686

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Buchman G. W., Banerjee S., Hansen J. N. Structure, expression, and evolution of a gene encoding the precursor of nisin, a small protein antibiotic. J Biol Chem. 1988 Nov 5;263(31):16260–16266. [PubMed] [Google Scholar]
  2. Chopin A., Chopin M. C., Moillo-Batt A., Langella P. Two plasmid-determined restriction and modification systems in Streptococcus lactis. Plasmid. 1984 May;11(3):260–263. doi: 10.1016/0147-619x(84)90033-7. [DOI] [PubMed] [Google Scholar]
  3. Cornwell G. G., 3rd, Sletten K., Johansson B., Westermark P. Evidence that the amyloid fibril protein in senile systemic amyloidosis is derived from normal prealbumin. Biochem Biophys Res Commun. 1988 Jul 29;154(2):648–653. doi: 10.1016/0006-291x(88)90188-x. [DOI] [PubMed] [Google Scholar]
  4. Dodd H. M., Horn N., Gasson M. J. Analysis of the genetic determinant for production of the peptide antibiotic nisin. J Gen Microbiol. 1990 Mar;136(3):555–566. doi: 10.1099/00221287-136-3-555. [DOI] [PubMed] [Google Scholar]
  5. Geis A., Singh J., Teuber M. Potential of lactic streptococci to produce bacteriocin. Appl Environ Microbiol. 1983 Jan;45(1):205–211. doi: 10.1128/aem.45.1.205-211.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gross E., Morell J. L. The structure of nisin. J Am Chem Soc. 1971 Sep 8;93(18):4634–4635. doi: 10.1021/ja00747a073. [DOI] [PubMed] [Google Scholar]
  7. Harkness R. E., Olschläger T. The biology of colicin M. FEMS Microbiol Rev. 1991 Jul;8(1):27–41. doi: 10.1111/j.1574-6968.1991.tb04955.x. [DOI] [PubMed] [Google Scholar]
  8. Hastings J. W., Sailer M., Johnson K., Roy K. L., Vederas J. C., Stiles M. E. Characterization of leucocin A-UAL 187 and cloning of the bacteriocin gene from Leuconostoc gelidum. J Bacteriol. 1991 Dec;173(23):7491–7500. doi: 10.1128/jb.173.23.7491-7500.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Holo H., Nilssen O., Nes I. F. Lactococcin A, a new bacteriocin from Lactococcus lactis subsp. cremoris: isolation and characterization of the protein and its gene. J Bacteriol. 1991 Jun;173(12):3879–3887. doi: 10.1128/jb.173.12.3879-3887.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kaletta C., Entian K. D. Nisin, a peptide antibiotic: cloning and sequencing of the nisA gene and posttranslational processing of its peptide product. J Bacteriol. 1989 Mar;171(3):1597–1601. doi: 10.1128/jb.171.3.1597-1601.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lear J. D., Wasserman Z. R., DeGrado W. F. Synthetic amphiphilic peptide models for protein ion channels. Science. 1988 May 27;240(4856):1177–1181. doi: 10.1126/science.2453923. [DOI] [PubMed] [Google Scholar]
  12. Muriana P. M., Klaenhammer T. R. Cloning, phenotypic expression, and DNA sequence of the gene for lactacin F, an antimicrobial peptide produced by Lactobacillus spp. J Bacteriol. 1991 Mar;173(5):1779–1788. doi: 10.1128/jb.173.5.1779-1788.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Muriana P. M., Klaenhammer T. R. Purification and partial characterization of lactacin F, a bacteriocin produced by Lactobacillus acidophilus 11088. Appl Environ Microbiol. 1991 Jan;57(1):114–121. doi: 10.1128/aem.57.1.114-121.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Mørtvedt C. I., Nissen-Meyer J., Sletten K., Nes I. F. Purification and amino acid sequence of lactocin S, a bacteriocin produced by Lactobacillus sake L45. Appl Environ Microbiol. 1991 Jun;57(6):1829–1834. doi: 10.1128/aem.57.6.1829-1834.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ojcius D. M., Young J. D. Cytolytic pore-forming proteins and peptides: is there a common structural motif? Trends Biochem Sci. 1991 Jun;16(6):225–229. doi: 10.1016/0968-0004(91)90090-i. [DOI] [PubMed] [Google Scholar]
  16. Piard J. C., Muriana P. M., Desmazeaud M. J., Klaenhammer T. R. Purification and Partial Characterization of Lacticin 481, a Lanthionine-Containing Bacteriocin Produced by Lactococcus lactis subsp. lactis CNRZ 481. Appl Environ Microbiol. 1992 Jan;58(1):279–284. doi: 10.1128/aem.58.1.279-284.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Sahl H. G., Kordel M., Benz R. Voltage-dependent depolarization of bacterial membranes and artificial lipid bilayers by the peptide antibiotic nisin. Arch Microbiol. 1987;149(2):120–124. doi: 10.1007/BF00425076. [DOI] [PubMed] [Google Scholar]
  18. Stoffels G., Nissen-Meyer J., Gudmundsdottir A., Sletten K., Holo H., Nes I. F. Purification and characterization of a new bacteriocin isolated from a Carnobacterium sp. Appl Environ Microbiol. 1992 May;58(5):1417–1422. doi: 10.1128/aem.58.5.1417-1422.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Sørensen H. H., Thomsen J., Bayne S., Højrup P., Roepstorff P. Strategies for determination of disulphide bridges in proteins using plasma desorption mass spectrometry. Biomed Environ Mass Spectrom. 1990 Nov;19(11):713–720. doi: 10.1002/bms.1200191110. [DOI] [PubMed] [Google Scholar]
  20. Tagg J. R., Dajani A. S., Wannamaker L. W. Bacteriocins of gram-positive bacteria. Bacteriol Rev. 1976 Sep;40(3):722–756. doi: 10.1128/br.40.3.722-756.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. van Belkum M. J., Hayema B. J., Jeeninga R. E., Kok J., Venema G. Organization and nucleotide sequences of two lactococcal bacteriocin operons. Appl Environ Microbiol. 1991 Feb;57(2):492–498. doi: 10.1128/aem.57.2.492-498.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. van Belkum M. J., Kok J., Venema G., Holo H., Nes I. F., Konings W. N., Abee T. The bacteriocin lactococcin A specifically increases permeability of lactococcal cytoplasmic membranes in a voltage-independent, protein-mediated manner. J Bacteriol. 1991 Dec;173(24):7934–7941. doi: 10.1128/jb.173.24.7934-7941.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES