Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1992 Sep;174(17):5702–5710. doi: 10.1128/jb.174.17.5702-5710.1992

The acyl dihydroxyacetone phosphate pathway enzymes for glycerolipid biosynthesis are present in the yeast Saccharomyces cerevisiae.

P V Racenis 1, J L Lai 1, A K Das 1, P C Mullick 1, A K Hajra 1, M L Greenberg 1
PMCID: PMC206518  PMID: 1512203

Abstract

The presence of the acyl dihydroxyacetone phosphate (acyl DHAP) pathway in yeasts was investigated by examining three key enzyme activities of this pathway in Saccharomyces cerevisiae. In the total membrane fraction of S. cerevisiae, we confirmed the presence of both DHAP acyltransferase (DHAPAT; Km = 1.27 mM; Vmax = 5.9 nmol/min/mg of protein) and sn-glycerol 3-phosphate acyltransferase (GPAT; Km = 0.28 mM; Vmax = 12.6 nmol/min/mg of protein). The properties of these two acyltransferases are similar with respect to thermal stability and optimum temperature of activity but differ with respect to pH optimum (6.5 for GPAT and 7.4 for DHAPAT) and sensitivity toward the sulfhydryl blocking agent N-ethylmaleimide. Total membrane fraction of S. cerevisiae also exhibited acyl/alkyl DHAP reductase (EC 1.1.1.101) activity, which has not been reported previously. The reductase has a Vmax of 3.8 nmol/min/mg of protein for the reduction of hexadecyl DHAP (Km = 15 microM) by NADPH (Km = 20 microM). Both acyl DHAP and alkyl DHAP acted as substrates. NADPH was the specific cofactor. Divalent cations and N-ethylmaleimide inhibited the enzymatic reaction. Reductase activity in the total membrane fraction from aerobically grown yeast cells was twice that from anaerobically grown cells. Similarly, DHAPAT and GPAT activities were also greater in aerobically grown yeast cells. The presence of these enzymes, together with the absence of both ether glycerolipids and the ether lipid-synthesizing enzyme (alkyl DHAP synthase) in S. cerevisiae, indicates that non-ether glycerolipids are synthesized in this organism via the acyl DHAP pathway.

Full text

PDF
5702

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  2. Culbertson M. R., Henry S. A. Inositol-requiring mutants of Saccharomyces cerevisiae. Genetics. 1975 May;80(1):23–40. doi: 10.1093/genetics/80.1.23. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Das A. K., Hajra A. K. Estimation of acyldihydroxyacetone phosphate and lysophosphatidate in animal tissues. Biochim Biophys Acta. 1984 Nov 14;796(2):178–189. doi: 10.1016/0005-2760(84)90346-1. [DOI] [PubMed] [Google Scholar]
  4. Datta S. C., Ghosh M. K., Hajra A. K. Purification and properties of acyl/alkyl dihydroxyacetone-phosphate reductase from guinea pig liver peroxisomes. J Biol Chem. 1990 May 15;265(14):8268–8274. [PubMed] [Google Scholar]
  5. Davis P. A., Hajra A. K. Assay and properties of the enzyme catalyzing the biosynthesis of 1-O-alkyl dihydroxyacetone 3-phosphate. Arch Biochem Biophys. 1981 Oct 1;211(1):20–29. doi: 10.1016/0003-9861(81)90424-0. [DOI] [PubMed] [Google Scholar]
  6. Declercq P. E., Haagsman H. P., Van Veldhoven P., Debeer L. J., Van Golde L. M., Mannaerts G. P. Rat liver dihydroxyacetone-phosphate acyltransferases and their contribution to glycerolipid synthesis. J Biol Chem. 1984 Jul 25;259(14):9064–9075. [PubMed] [Google Scholar]
  7. Gaynor P. M., Hubbell S., Schmidt A. J., Lina R. A., Minskoff S. A., Greenberg M. L. Regulation of phosphatidylglycerolphosphate synthase in Saccharomyces cerevisiae by factors affecting mitochondrial development. J Bacteriol. 1991 Oct;173(19):6124–6131. doi: 10.1128/jb.173.19.6124-6131.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ghosh M. K., Hajra A. K. Subcellular distribution and properties of acyl/alkyl dihydroxyacetone phosphate reductase in rodent livers. Arch Biochem Biophys. 1986 Mar;245(2):523–530. doi: 10.1016/0003-9861(86)90245-6. [DOI] [PubMed] [Google Scholar]
  9. Greenberg M. L., Hubbell S., Lam C. Inositol regulates phosphatidylglycerolphosphate synthase expression in Saccharomyces cerevisiae. Mol Cell Biol. 1988 Nov;8(11):4773–4779. doi: 10.1128/mcb.8.11.4773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hajra A. K., Agranoff B. W. Acyl dihydroxyacetone phosphate. Characterization of a 32P-labeled lipid from guinea pig liver mitochondria. J Biol Chem. 1968 Apr 10;243(7):1617–1622. [PubMed] [Google Scholar]
  11. Hajra A. K., Bishop J. E. Glycerolipid biosynthesis in peroxisomes via the acyl dihydroxyacetone phosphate pathway. Ann N Y Acad Sci. 1982;386:170–182. doi: 10.1111/j.1749-6632.1982.tb21415.x. [DOI] [PubMed] [Google Scholar]
  12. Hajra A. K., Burke C. L., Jones C. L. Subcellular localization of acyl coenzyme A: dihydroxyacetone phosphate acyltransferase in rat liver peroxisomes (microbodies). J Biol Chem. 1979 Nov 10;254(21):10896–10900. [PubMed] [Google Scholar]
  13. Hajra A. K., Burke C. Biosynthesis of phosphatidic acid in rat brain via acyl dihydroxyacetone phosphate. J Neurochem. 1978 Jul;31(1):125–134. doi: 10.1111/j.1471-4159.1978.tb12440.x. [DOI] [PubMed] [Google Scholar]
  14. Hajra A. K. On extraction of acyl and alkyl dihydroxyacetone phosphate from incubation mixtures. Lipids. 1974 Aug;9(8):502–505. doi: 10.1007/BF02532495. [DOI] [PubMed] [Google Scholar]
  15. Johnston J. M., Paltauf F. Lipid metabolism in inositol-deficient yeast, Saccharomyces carlsbergensis. II. Incorporation of labeled precursors into lipids by whole cells and activities of some enzymes involved in lipid formation. Biochim Biophys Acta. 1970 Dec 15;218(3):431–440. [PubMed] [Google Scholar]
  16. Jones C. L., Hajra A. K. Properties of guinea pig liver peroxisomal dihydroxyacetone phosphate acyltransferase. J Biol Chem. 1980 Sep 10;255(17):8289–8295. [PubMed] [Google Scholar]
  17. KORNBERG A., PRICER W. E., Jr Enzymatic esterification of alpha-glycerophosphate by long chain fatty acids. J Biol Chem. 1953 Sep;204(1):345–357. [PubMed] [Google Scholar]
  18. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  19. LaBelle E. F., Jr, Hajra A. K. Enzymatic reduction of alkyl and acyl derivatives of dihydroxyacetone phosphate by reduced pyridine nucleotides. J Biol Chem. 1972 Sep 25;247(18):5825–5834. [PubMed] [Google Scholar]
  20. LaBelle E. F., Jr, Hajra A. K. Purification and kinetic properties of acyl and alkyl dihydroxyacetone phosphate oxidoreductase. J Biol Chem. 1974 Nov 10;249(21):6936–6944. [PubMed] [Google Scholar]
  21. Manning R., Brindley D. N. Tritium isotope effects in the measurement of the glycerol phosphate and dihydroxyacetone phosphate pathways of glycerolipid biosynthesis in rat liver. Biochem J. 1972 Dec;130(4):1003–1012. doi: 10.1042/bj1301003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Mason R. J. Importance of the acyl dihydroxyacetone phosphate pathway in the synthesis of phosphatidylglycerol and phosphatidylcholine in alveolar type II cells. J Biol Chem. 1978 May 25;253(10):3367–3370. [PubMed] [Google Scholar]
  23. Perlman P. S., Mahler H. R. Derepression of mitochondria and their enzymes in yeast: regulatory aspects. Arch Biochem Biophys. 1974 May;162(1):248–271. doi: 10.1016/0003-9861(74)90125-8. [DOI] [PubMed] [Google Scholar]
  24. Pollock R. J., Hajra A. K., Agranoff B. W. Incorporation of D-[3-3H, U-14C] glucose into glycerolipid via acyl dihydroxyacetone phosphate untransformed and viral-transformed BHK-21-c13 fibroblasts. J Biol Chem. 1976 Sep 10;251(17):5149–5154. [PubMed] [Google Scholar]
  25. Rognstad R., Clark D. G., Katz J. Pathways of glyceride glycerol synthesis. Biochem J. 1974 May;140(2):249–251. doi: 10.1042/bj1400249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Schlossman D. M., Bell R. M. Glycerolipid biosynthesis in Saccharomyces cerevisiae: sn-glycerol-3-phosphate and dihydroxyacetone phosphate acyltransferase activities. J Bacteriol. 1978 Mar;133(3):1368–1376. doi: 10.1128/jb.133.3.1368-1376.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Schlossman D. M., Bell R. M. Triacylglycerol synthesis in isolated fat cells. Evidence that the sn-glycerol-3-phosphate and dihydroxyacetone phosphate acyltransferase activities are dual catalytic functions of a single microsomal enzyme. J Biol Chem. 1976 Sep 25;251(18):5738–5744. [PubMed] [Google Scholar]
  28. Schnaitman C., Greenawalt J. W. Enzymatic properties of the inner and outer membranes of rat liver mitochondria. J Cell Biol. 1968 Jul;38(1):158–175. doi: 10.1083/jcb.38.1.158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Sedgwick B., Hübscher G. Metabolism of phospholipids. IX. Phosphatidate phosphohydrolase in rat liver. Biochim Biophys Acta. 1965 Jul 7;106(1):63–77. doi: 10.1016/0005-2760(65)90096-2. [DOI] [PubMed] [Google Scholar]
  30. Tillman T. S., Bell R. M. Mutants of Saccharomyces cerevisiae defective in sn-glycerol-3-phosphate acyltransferase. Simultaneous loss of dihydroxyacetone phosphate acyltransferase indicates a common gene. J Biol Chem. 1986 Jul 15;261(20):9144–9149. [PubMed] [Google Scholar]
  31. Zinser E., Sperka-Gottlieb C. D., Fasch E. V., Kohlwein S. D., Paltauf F., Daum G. Phospholipid synthesis and lipid composition of subcellular membranes in the unicellular eukaryote Saccharomyces cerevisiae. J Bacteriol. 1991 Mar;173(6):2026–2034. doi: 10.1128/jb.173.6.2026-2034.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. van den Bosch H. Phosphoglyceride metabolism. Annu Rev Biochem. 1974;43(0):243–277. doi: 10.1146/annurev.bi.43.070174.001331. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES