Abstract
Staphylococcus aureus is a major pathogen both within hospitals and in the community. Methicillin, a β-lactam antibiotic, acts by inhibiting penicillin-binding proteins (PBPs) that are involved in the synthesis of peptidoglycan, an essential mesh-like polymer that surrounds the cell. S. aureus can become resistant to methicillin and other β-lactam antibiotics through the expression of a foreign PBP, PBP2a, that is resistant to the action of methicillin but which can perform the functions of the host PBPs. Methicillin-resistant S. aureus isolates are often resistant to other classes of antibiotics (through different mechanisms) making treatment options limited, and this has led to the search for new compounds active against these strains. An understanding of the mechanism of methicillin resistance has led to the discovery of accessory factors that influence the level and nature of methicllin resistance. Accessory factors, such as Fem factors, provide possible new targets, while compounds that modulate methicillin resistance such as epicatechin gallate, derived from green tea, and corilagin, provide possible lead compounds for development of inhibitors.
Full Text
The Full Text of this article is available as a PDF (141.7 KB).
References
- 1.Chambers H. F. (1997) Methicillin resistance in staphylococci: molecular and biochemical basis and clinical implications. Clin. Microbiol. Rev., 10, 781–791. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.Livermore D. M. (2000) Antibiotic resistance in staphylococci. Intl. J. Antimicrob. Agents, 16, S3–S10. [DOI] [PubMed] [Google Scholar]
- 3.Giesbrecht P., Kersten T., Maidhof H., & Wecke J. (1998) Staphylococcal cell wall: Morphogenesis and fatal variations in the presence of penicillin. Microbiol. Mol. Biol. Rev., 62, 1371–1414. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.Berger-Bächi B, & Tschierske M. (1998) Role of Fem factors in methicillin resistance. Drug Resisance Updates, 1, 325–335. [DOI] [PubMed] [Google Scholar]
- 5.Montanari M. P., Massidda O., Mingoia M., & Varaldo P. E. (1996) Borderline susceptibility to methicillin in Staphylococcus aureus: a new mechanism of resistance? Microb. Drug Resist., 2, 257–260. [DOI] [PubMed] [Google Scholar]
- 6.Hackbarth C. J., Kocagoz T., Kocagoz S., & Chambers H. F. (1995) Point mutations in Staphylococcus aureus PBP2 gene affect penicillin-binding kinetics and are associated with resistance. Antimicrob. Agents Chemother., 39, 103–106. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.Wu S. W., DE Lencastre H., & Tomasz A. (2001) Recruitment of the mecA gene homologue of Staphylococcus sciuri into a resistance determinant and expression of the resistant phenotype in Staphylococcus aureus. J. Bacteriol., 183, 2417–2424. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.Katayama Y., Ito T., & Hiramatsu K. (2000) A new class of genetic element, Staphylococcus cassette chromosome mec, encodes methicillin resistance in Staphylococcus aureus. Antimicrob. Agents Chemother., 44, 1549–1555. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Kreiswirth B., Kornblum J., Arbeit R. D., Eisner W., Maslow J. N., NcGeer A., Low D. E., & Novick R. P. (1993) Evidence for a clonal origin of methicillin resistance in Staphylococcus aureus. Science, 259, 227–230. [DOI] [PubMed] [Google Scholar]
- 10.Oliveira D. C., Wu S. W., & DE Lencastre H. (2000) Genetic organization of the downstream region of the mecA element in methicillin-resistant Staphylococcus aureus isolates carrying different polymorphisms of this region. Antimicrob. Agents Chemother., 44, 1906–1910. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.Sharma V. K., Hackbarth C. J., Dickinson T. M., & Archer G. L. (1998) Interaction of native and mutant MecI repressors with sequences that regulate mecA, the gene encoding penicillin-binding protein 2a in methicillin-resistant staphylococci. J. Bacteriol., 180, 2160–2166. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Song M. D., Wachi M., Doi M., Ishino F., & Matsuhashi M. (1987) Evolution of an inducible penicillin-target protein in methicillin-resistant Staphylococcus aureus by gene fusion. FEBS Lett., 221, 167–171. [DOI] [PubMed] [Google Scholar]
- 13.Gregory P. D., Lewis R. A., Curnock S. P., & Dyke K. G. (1997) Studies of the repressor (BlaI) of β-lactamase synthesis in Staphylococcus aureus. Mol. Microbiol., 24, 1025–1037. [DOI] [PubMed] [Google Scholar]
- 14.Hackbarth C. J., and Chambers H. F. (1993) blaI and blaR1 regulate β-lacta-mase and PBP2a production in methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother., 37, 1144–1149. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Zhang H. Z., Hackbarth C. J., Chansky K. M., & Chambers H. F. (2001) A proteolytic transmenbrane signalling pathway and resistance to β-lactams in staphylococci. Science, 291, 1962–1965. [DOI] [PubMed] [Google Scholar]
- 16.Kuwahara-Arai K., Kondo N., Hori S., Tateda-Suzuki E., and Hiramatsu K. (1996) Suppression of methicillin resistance in mecA-containing pre-methicillin-resistant Staphylococcus aureus strain is caused by the mecI-mediated repression of PBP2’ production. Antimicrob. Agents Chemother., 40, 2680–2685. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.Kobayashi N., Taniguchi K., & Urasawa S. (1998) Analysis of diversity of mutations in the mecI gene and mecA promoter/operator region of methicillin-resistant Staphylococcus aureus and Staphylococcus epidermidis. Antimicrob. Agents Chemother., 42, 717–720. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.Ryffel C., Strassle A., Kayser F. H., & Berger-Bächi B. (1994) Mechanisms of heteroresistance in methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother., 38, 724–728. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.Kondo N., Kuwahara-Arai K., Kuroda-Murakami H., Tateda-Suzuki E., & Hiramatsu K. (2001) Eagle-type methicillin resistance: New phenotype of high methicillin resistance under mec regulator gene control. Antimicrobial. Agents Chemother., 45, 815–824. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.Sieradzki K., & Tomasz A. (1997) Suppression of β-lactam antibiotic resistance in a methicillin-resistant Staphylococcus aureus through synergic action of early cell wall inhibitors and some other antibiotics. J. Antimicrob. Chemother., 39, Suppl. A, 47–51. [DOI] [PubMed] [Google Scholar]
- 21.Pinho M. G., DE Lencastre H., & Tomasz A. (2001) An aquired and native penicillin-binding protein cooperate in building the cell wall of drug-resistant staphylococci. PNAS, 19, 10886–10891. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.DE Jonge B. L. M., Chang Y.-S., Xu N., & Gage D. (1996) Effect of exogenous glycine on peptidoglycan composition and resistance in a methicillin-resistant Staphylococcus aureus strain. Antimicrob. Agents Chemother., 40, 1498–1503. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23.Ludovice A. M., Wu S. W., & DE Lencastre H. (1998) Molecular cloning and DNA sequencing of the Staphylococcus aureus UDP-N-Acetylmuramyl tri-peptide synthetase (murE) gene, essential for the optimal expression of methicillin resistance. Microbial Drug Resistance, 4, 85–90. [DOI] [PubMed] [Google Scholar]
- 24.Labischinski H., & Johannsen L. (1999) Cell wall targets in methicillin-resistant staphylococci. Drug Resistance Updates, 2, 319–325. [DOI] [PubMed] [Google Scholar]
- 25.Ton-That H., Labischinski H., Berger-Bächi B., & Schneewind O. (1998) Anchor structure of staphylococcal surface proteins. J. Biol. Chem., 44, 29143–29149. [DOI] [PubMed] [Google Scholar]
- 26.Tschierske M., Ehlert K., Stranden A. M., & Berger-Bächi B. (1997) Lif, the lysostaphin immunity factor, complements FemB in staphylococcal peptidoglycan interpeptide bridge formation. FEMS Microbiol. Lett., 153, 261–264. [DOI] [PubMed] [Google Scholar]
- 27.Maki H., Yamaguchi T., & Murakami K. (1994) Cloning and characterization of a gene affecting the methicillin resistance level and the autolysis rate in Staphylococcus aureus. J. Bacteriol., 176, 4993–5000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28.Matthews P. R., & Stewart P. R. (1984) Resistance heterogeneity in methicillin-resistant Staphylococcus aureus. FEMS Microbiol. Lett., 22, 161–166. [Google Scholar]
- 29.Liu I. X., Durham D. G., & Richards R. M. E. (2000) Baicalin synergy with β-lactam antibiotics against methicillin-resistant Staphylococcus aureus and other β-lactam-resistant strains of S. aureus. J. Pharm. Pharmacol., 52, 361–366. [DOI] [PubMed] [Google Scholar]
- 30.Eid C. N., Halligan N. G., Nicas T. I., Mullen D. L., Butler T. F., Loncharich R. J., Paschal J. W., Schofield C. J., Westwood N. J., & Cheng L. (1997) Tripeptide LY301621 and its diastereomers as methicillin potentiators against methicillin-resistant Staphylococcus aureus. J. Antibiot., 50, 283–285. [PubMed] [Google Scholar]
- 31.Yamase T., Fukuda N., & Tajima Y. (1996) Synergistic effect of polyoxotungstates in combination with β-lactam antibiotics on antibacterial activity against methicillin-resistant Staphylococcus aureus. Biol. Pharm. Bull., 19, 459–465. [DOI] [PubMed] [Google Scholar]
- 32.Nicolson K., Evans G., & O'Toole P. W. (1999) Potentiation of methicillin activity against methicillin-resistant Staphylococcus aureus by diterpenes. FEMS Microbiol. Lett., 179, 233–239. [DOI] [PubMed] [Google Scholar]
- 33.Bruns O., Bruns W., & Pulverer G. (1997) Regulation of β-lactamase synthesis as a novel site of action for suppression of methicillin resistance in Staphylococcus aureus. Zentralbl. Bakteriol., 285, 413–430. [DOI] [PubMed] [Google Scholar]
- 34.Projan S. J., Brown-Skrobot S., Schlievert P. M., Vandenesch F., & Novick R. P. (1994) Glycerol monolaurate inhibits the production of β-lactamase, toxic shock syndrome toxin-1, and other staphylococcal exoproteins by interfering with signal transduction. J. Bacteriol., 176, 4204–4209. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 35.Komatsuzawa H., Suzuki J., Sugai M., Miyake Y., & Suginaka H. (1994) The effect of Triton X-100 on the in-vitro susceptibility of methicillin-resistant Staphylococcus aureus to oxacillin. J. Antimicrob. Chemother., 34, 885–897. [DOI] [PubMed] [Google Scholar]
- 36.Komatsuzawa H., Ohta K., Labischinski H., Sugai M., & Suginaka H. (1999) Characterization of fmtA, a gene that modulates the expression of methicillin resistance in Staphylococcus aureus. Antimicrob. Agents Chemother., 43, 2121–2125. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 37.Komatsuzawa H., Ohta K., Sugai M., Fujiwara T., Glanzmann P., Berger-Bächi B., & Suginaka H. (2000) Tn 551 -mediated insertional inactivation of the fmtB gene encoding a cell wall-associated protein abolishes methicillin resistance in Staphylococcus aureus. J. Antimicrob. Chemother., 45, 421–431. [DOI] [PubMed] [Google Scholar]
- 38.Shintani H. T., Aga Y., Shiota S., Tsuchiya T., & Yoshida T. (2000) Phenolic constituents of licorice. VII. Structures of glicophenone and glicoisoflavanone, and effects of licorice phenolics on methicillin-resistant Staphylococcus aureus. Chem. Pharm. Bull. (Tokyo), 48, 1286–1292. [DOI] [PubMed] [Google Scholar]
- 39.Shirai C., Sugai M., Komatsuzawa H., Ohta K., Yamakido M., & Suginaka H. (1998) A triazine dye, cibacron blue F3GA, decreases oxacillin resistance levels in methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother., 42, 1278–1280. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 40.Hamilton-Miller J. M. T. (1995) Antimicrobial properties of tea (Camellia sinensis L.). Antimicrob. Agents Chemother., 39: 2375–2377. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 41.Hamilton-Miller J. M. T., & Shah S. (1999) Disorganization of cell division of methicillin-resistant Staphylococcus aureus by a component of tea (Camellia sinensis): a study by electron microscopy. FEMS Microbiol. Lett., 176, 463–469. [DOI] [PubMed] [Google Scholar]
- 42.Yam T. S., Hamilton-Miller J. M. T., & Shah S. (1998) The effect of a component of tea (Camellia sinensis) on methicillin resistance, PBP2’ synthesis, and β-lactamase production in Staphylococcus aureus. J. Antimicrob. Chemother., 42, 211–216. [DOI] [PubMed] [Google Scholar]
- 43.Shiota S., Shimizu M., Mizushima T., Ito H., Hatano T., Yoshida T., & Tsuchiya T. (1999) AMarked reduction in the minimum inhibitory concentration (MIC) of β-lactams in methicillin-resistant Staphylococcus aureus produced by epicatechin gallate, an ingredient of green tea (Camellia sinensis). Biol. Pharm. Bull., 22, 1388–1390. [DOI] [PubMed] [Google Scholar]
- 44.Zhao W.-H., Hu Z.-Q., Okubo S., Hara Y., & Shimamura T. (2001) Mechanism of synergy between epigallocatechin gallate and β-lactams against methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother., 45, 1737–1742. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 45.Ikigai H., Nakae T., Hara Y., & Shimamura T. (1993) Bactericidal catechins damage the lipid bilayer. Biochimica Biophyscia Acta, 1147, 132–136. [DOI] [PubMed] [Google Scholar]
- 46.Yamashita S., Yokoyama K., Matsumiya N., & Yamaguchi H. (2001) Successful green tea nebulization therapy for subglottic tracheal stenosis due to MRSA infection. J Infect., 42, 222–223. [DOI] [PubMed] [Google Scholar]
- 47.Shimizu M., Shiota S., Mizushima T., Ito H., Hatano T., Yoshida T., & Tsuchiya T. (2001) Marked potentiation of the activity of β-lactams against methicillin-resistant Staphylococcus aureus by Coriagin. Antimicrob. Agents and Chemother., 45, 3198–3201. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 48.Shiota S., Shimizu M., Mizusima T., Ito H., Hatano T., Yoshida T., & Tsuchiya T. (2000) Restoration of the effectiveness of β-lactams on methicillin-resistant Staphylococcus aureus by tellimagrandin I from rose red. FEMS Microbiol. Lett., 185, 135–138. [DOI] [PubMed] [Google Scholar]