Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1993 Sep;175(17):5375–5383. doi: 10.1128/jb.175.17.5375-5383.1993

Identification and characterization of the tktB gene encoding a second transketolase in Escherichia coli K-12.

A Iida 1, S Teshiba 1, K Mizobuchi 1
PMCID: PMC206592  PMID: 8396116

Abstract

We isolated a transposon Tn10 insertion mutant of Escherichia coli K-12 which could not grow on MacConkey plates containing D-ribose. Characterization of the mutant revealed that the level of the transketolase activity was reduced to one-third of that of the wild type. The mutation was mapped at 63.5 min on the E. coli genetic map, in which the transketolase gene (tkt) had been mapped. A multicopy suppressor gene which complemented the tkt mutation was cloned on a 7.8-kb PstI fragment. The cloned gene was located at 53 min on the chromosome. Subcloning and sequencing of a 2.7-kb fragment containing the suppressor gene identified an open reading frame encoding a polypeptide of 667 amino acids with a calculated molecular weight of 72,973. Overexpression of the protein and determination of its N-terminal amino acid sequence defined unambiguously the translational start site of the gene. The deduced amino acid sequence showed similarity to sequences of transketolases from Saccharomyces cerevisiae and Rhodobacter sphaeroides. In addition, the level of the transketolase activity increased in strains carrying the gene in multicopy. Therefore, the gene encoding this transketolase was designated tktB and the gene formerly called tkt was renamed tktA. Analysis of the phenotypes of the strains containing tktA, tktB, or tktA tktB mutations indicated that tktA and tktB were responsible for major and minor activities, respectively, of transketolase in E. coli.

Full text

PDF
5375

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  2. Chen J. H., Gibson J. L., McCue L. A., Tabita F. R. Identification, expression, and deduced primary structure of transketolase and other enzymes encoded within the form II CO2 fixation operon of Rhodobacter sphaeroides. J Biol Chem. 1991 Oct 25;266(30):20447–20452. [PubMed] [Google Scholar]
  3. Edman P., Begg G. A protein sequenator. Eur J Biochem. 1967 Mar;1(1):80–91. doi: 10.1007/978-3-662-25813-2_14. [DOI] [PubMed] [Google Scholar]
  4. Eidels L., Osborn M. J. Lipopolysaccharide and aldoheptose biosynthesis in transketolase mutants of Salmonella typhimurium. Proc Natl Acad Sci U S A. 1971 Aug;68(8):1673–1677. doi: 10.1073/pnas.68.8.1673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fletcher T. S., Kwee I. L., Nakada T., Largman C., Martin B. M. DNA sequence of the yeast transketolase gene. Biochemistry. 1992 Feb 18;31(6):1892–1896. doi: 10.1021/bi00121a044. [DOI] [PubMed] [Google Scholar]
  6. Goad W. B., Kanehisa M. I. Pattern recognition in nucleic acid sequences. I. A general method for finding local homologies and symmetries. Nucleic Acids Res. 1982 Jan 11;10(1):247–263. doi: 10.1093/nar/10.1.247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Harayama S., Palva E. T., Hazelbauer G. L. Transposon-insertion mutants of Escherichia coli K12 defective in a component common to galactose and ribose chemotaxis. Mol Gen Genet. 1979 Mar 20;171(2):193–203. doi: 10.1007/BF00270005. [DOI] [PubMed] [Google Scholar]
  8. Hawkins C. F., Borges A., Perham R. N. A common structural motif in thiamin pyrophosphate-binding enzymes. FEBS Lett. 1989 Sep 11;255(1):77–82. doi: 10.1016/0014-5793(89)81064-6. [DOI] [PubMed] [Google Scholar]
  9. Hewick R. M., Hunkapiller M. W., Hood L. E., Dreyer W. J. A gas-liquid solid phase peptide and protein sequenator. J Biol Chem. 1981 Aug 10;256(15):7990–7997. [PubMed] [Google Scholar]
  10. Icho T., Iino T. Isolation and characterization of motile Escherichia coli mutants resistant to bacteriophage chi. J Bacteriol. 1978 Jun;134(3):854–860. doi: 10.1128/jb.134.3.854-860.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Iida A., Groarke J. M., Park S., Thom J., Zabicky J. H., Hazelbauer G. L., Randall L. L. A signal sequence mutant defective in export of ribose-binding protein and a corresponding pseudorevertant isolated without imposed selection. EMBO J. 1985 Jul;4(7):1875–1880. doi: 10.1002/j.1460-2075.1985.tb03863.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Iida A., Harayama S., Iino T., Hazelbauer G. L. Molecular cloning and characterization of genes required for ribose transport and utilization in Escherichia coli K-12. J Bacteriol. 1984 May;158(2):674–682. doi: 10.1128/jb.158.2.674-682.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Janowicz Z. A., Eckart M. R., Drewke C., Roggenkamp R. O., Hollenberg C. P., Maat J., Ledeboer A. M., Visser C., Verrips C. T. Cloning and characterization of the DAS gene encoding the major methanol assimilatory enzyme from the methylotrophic yeast Hansenula polymorpha. Nucleic Acids Res. 1985 May 10;13(9):3043–3062. doi: 10.1093/nar/13.9.3043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Josephson B. L., Fraenkel D. G. Sugar metabolism in transketolase mutants of Escherichia coli. J Bacteriol. 1974 Jun;118(3):1082–1089. doi: 10.1128/jb.118.3.1082-1089.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Josephson B. L., Fraenkel D. G. Transketolase mutants of Escherichia coli. J Bacteriol. 1969 Dec;100(3):1289–1295. doi: 10.1128/jb.100.3.1289-1295.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kleckner N., Barker D. F., Ross D. G., Botstein D. Properties of the translocatable tetracycline-resistance element Tn10 in Escherichia coli and bacteriophage lambda. Genetics. 1978 Nov;90(3):427–461. doi: 10.1093/genetics/90.3.427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kleckner N., Bender J., Gottesman S. Uses of transposons with emphasis on Tn10. Methods Enzymol. 1991;204:139–180. doi: 10.1016/0076-6879(91)04009-d. [DOI] [PubMed] [Google Scholar]
  18. Kohara Y., Akiyama K., Isono K. The physical map of the whole E. coli chromosome: application of a new strategy for rapid analysis and sorting of a large genomic library. Cell. 1987 Jul 31;50(3):495–508. doi: 10.1016/0092-8674(87)90503-4. [DOI] [PubMed] [Google Scholar]
  19. Kushner S. R., Nagaishi H., Templin A., Clark A. J. Genetic recombination in Escherichia coli: the role of exonuclease I. Proc Natl Acad Sci U S A. 1971 Apr;68(4):824–827. doi: 10.1073/pnas.68.4.824. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  21. Lambden P. R., Drabble W. T. The gua operon of Escherichia coli K-12: evidence for polarity from guaB to guaA. J Bacteriol. 1973 Sep;115(3):992–1002. doi: 10.1128/jb.115.3.992-1002.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lindqvist Y., Schneider G., Ermler U., Sundström M. Three-dimensional structure of transketolase, a thiamine diphosphate dependent enzyme, at 2.5 A resolution. EMBO J. 1992 Jul;11(7):2373–2379. doi: 10.1002/j.1460-2075.1992.tb05301.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Mead D. A., Szczesna-Skorupa E., Kemper B. Single-stranded DNA 'blue' T7 promoter plasmids: a versatile tandem promoter system for cloning and protein engineering. Protein Eng. 1986 Oct-Nov;1(1):67–74. doi: 10.1093/protein/1.1.67. [DOI] [PubMed] [Google Scholar]
  24. Radnis B. A., Rhee D. K., Morrison D. A. Genetic transformation in Streptococcus pneumoniae: nucleotide sequence and predicted amino acid sequence of recP. J Bacteriol. 1990 Jul;172(7):3669–3674. doi: 10.1128/jb.172.7.3669-3674.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Satishchandran C., Markham G. D., Moore R. C., Boyle S. M. Locations of the speA, speB, speC, and metK genes on the physical map of Escherichia coli. J Bacteriol. 1990 Sep;172(9):4748–4748. doi: 10.1128/jb.172.9.4748.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Schaaff I., Hohmann S., Zimmermann F. K. Molecular analysis of the structural gene for yeast transaldolase. Eur J Biochem. 1990 Mar 30;188(3):597–603. doi: 10.1111/j.1432-1033.1990.tb15440.x. [DOI] [PubMed] [Google Scholar]
  28. Schellenberg G. D., Wilson N. M., Copeland B. R., Furlong C. E. Transketolase from human red blood cells. Methods Enzymol. 1982;90(Pt E):223–228. doi: 10.1016/s0076-6879(82)90129-x. [DOI] [PubMed] [Google Scholar]
  29. Shine J., Dalgarno L. The 3'-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1342–1346. doi: 10.1073/pnas.71.4.1342. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
  31. Sprenger G. A. Location of the transketolase (tkt) gene on the Escherichia coli physical map. J Bacteriol. 1992 Mar;174(5):1707–1708. doi: 10.1128/jb.174.5.1707-1708.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Stern M. J., Ames G. F., Smith N. H., Robinson E. C., Higgins C. F. Repetitive extragenic palindromic sequences: a major component of the bacterial genome. Cell. 1984 Jul;37(3):1015–1026. doi: 10.1016/0092-8674(84)90436-7. [DOI] [PubMed] [Google Scholar]
  33. Szybalski E. H., Szybalski W. A comprehensive molecular map of bacteriophage lambda. Gene. 1979 Nov;7(3-4):217–270. doi: 10.1016/0378-1119(79)90047-7. [DOI] [PubMed] [Google Scholar]
  34. Vieira J., Messing J. The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene. 1982 Oct;19(3):259–268. doi: 10.1016/0378-1119(82)90015-4. [DOI] [PubMed] [Google Scholar]
  35. Winans S. C., Elledge S. J., Krueger J. H., Walker G. C. Site-directed insertion and deletion mutagenesis with cloned fragments in Escherichia coli. J Bacteriol. 1985 Mar;161(3):1219–1221. doi: 10.1128/jb.161.3.1219-1221.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]
  37. Yura T., Mori H., Nagai H., Nagata T., Ishihama A., Fujita N., Isono K., Mizobuchi K., Nakata A. Systematic sequencing of the Escherichia coli genome: analysis of the 0-2.4 min region. Nucleic Acids Res. 1992 Jul 11;20(13):3305–3308. doi: 10.1093/nar/20.13.3305. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES