Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1993 Sep;175(18):6049–6051. doi: 10.1128/jb.175.18.6049-6051.1993

A method for selection of mutations at the tdk locus in Escherichia coli.

W C Summers 1, P Raksin 1
PMCID: PMC206689  PMID: 8376351

Abstract

Mutants of Escherichia coli which are resistant to 5-fluorodeoxyuridine all have mutations which map at a single locus at 27.5 min on the genetic map of E. coli. Extracts prepared from each mutant were deficient in thymidine kinase activity measured in vitro. Simple selective conditions which allowed detection of one mutant in the presence of 10(7) wild-type bacteria were found. These results show that loss of thymidine kinase activity is the usual mechanism for 5-fluorodeoxyuridine resistance and that all such mutations occur at the locus previously designated tdk.

Full text

PDF
6049

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beck C. F., Ingraham J. L., Neuhard J. Location on the chromosome of Salmonella typhimurium of genes governing pyrimidine metabolism. II. Uridine kinase, cytosine deaminase and thymidine kinase. Mol Gen Genet. 1972;115(3):208–215. doi: 10.1007/BF00268884. [DOI] [PubMed] [Google Scholar]
  2. Beck C. F., Ingraham J. L., Neuhard J., Thomassen E. Metabolism of pyrimidines and pyrimidine nucleosides by Salmonella typhimurium. J Bacteriol. 1972 Apr;110(1):219–228. doi: 10.1128/jb.110.1.219-228.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Drinkwater N. R., Klinedinst D. K. Chemically induced mutagenesis in a shuttle vector with a low-background mutant frequency. Proc Natl Acad Sci U S A. 1986 May;83(10):3402–3406. doi: 10.1073/pnas.83.10.3402. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hiraga S., Igarashi K., Yura T. A deoxythymidine kinase-deficient mutant of Escherichia coli. I. Isolation and some properties. Biochim Biophys Acta. 1967 Aug 22;145(1):41–51. doi: 10.1016/0005-2787(67)90652-1. [DOI] [PubMed] [Google Scholar]
  5. Igarashi K., Hiraga S., Yura T. A deoxythymidine kinase deficient mutant of Escherichia coli. II. Mapping and transduction studies with phage phi 80. Genetics. 1967 Nov;57(3):643–654. doi: 10.1093/genetics/57.3.643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. MONOD J., COHEN-BAZIRE G., COHN M. Sur la biosynthèse de la beta-galactosidase (lactase) chez Escherichia coli; la spécificité de l'induction. Biochim Biophys Acta. 1951 Nov;7(4):585–599. doi: 10.1016/0006-3002(51)90072-8. [DOI] [PubMed] [Google Scholar]
  7. Sanderson M. R., Freemont P. S., Murthy H. M., Krane J. F., Summers W. C., Steitz T. A. Purification and crystallization of thymidine kinase from herpes simplex virus type 1. J Mol Biol. 1988 Aug 20;202(4):917–919. doi: 10.1016/0022-2836(88)90569-4. [DOI] [PubMed] [Google Scholar]
  8. Singer M., Baker T. A., Schnitzler G., Deischel S. M., Goel M., Dove W., Jaacks K. J., Grossman A. D., Erickson J. W., Gross C. A. A collection of strains containing genetically linked alternating antibiotic resistance elements for genetic mapping of Escherichia coli. Microbiol Rev. 1989 Mar;53(1):1–24. doi: 10.1128/mr.53.1.1-24.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Studier F. W., Moffatt B. A. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol. 1986 May 5;189(1):113–130. doi: 10.1016/0022-2836(86)90385-2. [DOI] [PubMed] [Google Scholar]
  10. VOGEL H. J., BONNER D. M. Acetylornithinase of Escherichia coli: partial purification and some properties. J Biol Chem. 1956 Jan;218(1):97–106. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES