Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1993 Oct;175(19):6269–6275. doi: 10.1128/jb.175.19.6269-6275.1993

Lactose permease mutants which transport (malto)-oligosaccharides.

S G Olsen 1, K M Greene 1, R J Brooker 1
PMCID: PMC206723  PMID: 8407799

Abstract

Lactose permease mutants, which were previously isolated in sugar specificity studies, were screened for their abilities to transport the trisaccharide maltotriose. Six multiple mutants (e.g., five double mutants and one triple mutant) were identified as forming fermentation-positive colonies on maltotriose MacConkey plates and were also shown to grow on maltotriose minimal plates. All of these multiple mutants contained a combination of two or three amino acid substitutions at position 177, 236, 306, or 322 within the permease. In contrast, none of the corresponding single mutants at these locations were observed to exhibit an enhanced rate of maltotriose transport. In whole-cell assays, the multiple mutants were shown to transport relatively long alpha-nitrophenylglucoside (alpha NPG) molecules. In certain cases, alpha NPG molecules containing up to four glucose residues in addition to the nitrophenyl group were shown to be transported to a significant degree. Overall, the abilities of lactose permease mutants to transport maltotriose and long alpha NPGs are discussed with regard to the dimensions of the sugar and the mechanism of sugar transport.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Birnboim H. C., Doly J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 1979 Nov 24;7(6):1513–1523. doi: 10.1093/nar/7.6.1513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bowers G. N., Jr, McComb R. B., Christensen R. G., Schaffer R. High-purity 4-nitrophenol: purification, characterization, and specifications for use as a spectrophotometric reference material. Clin Chem. 1980 May;26(6):724–729. [PubMed] [Google Scholar]
  3. Brooker R. J. Characterization of the double mutant, Val-177/Asn-322, of the lactose permease. J Biol Chem. 1990 Mar 5;265(7):4155–4160. [PubMed] [Google Scholar]
  4. Brooker R. J., Fiebig K., Wilson T. H. Characterization of lactose carrier mutants which transport maltose. J Biol Chem. 1985 Dec 25;260(30):16181–16186. [PubMed] [Google Scholar]
  5. Brooker R. J. The lactose permease of Escherichia coli. Res Microbiol. 1990 Mar-Apr;141(3):309–315. doi: 10.1016/0923-2508(90)90004-a. [DOI] [PubMed] [Google Scholar]
  6. Brooker R. J., Wilson T. H. Isolation and nucleotide sequencing of lactose carrier mutants that transport maltose. Proc Natl Acad Sci U S A. 1985 Jun;82(12):3959–3963. doi: 10.1073/pnas.82.12.3959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Büchel D. E., Gronenborn B., Müller-Hill B. Sequence of the lactose permease gene. Nature. 1980 Feb 7;283(5747):541–545. doi: 10.1038/283541a0. [DOI] [PubMed] [Google Scholar]
  8. CRANE R. K. Hypothesis for mechanism of intestinal active transport of sugars. Fed Proc. 1962 Nov-Dec;21:891–895. [PubMed] [Google Scholar]
  9. CRANE R. K. Intestinal absorption of sugars. Physiol Rev. 1960 Oct;40:789–825. doi: 10.1152/physrev.1960.40.4.789. [DOI] [PubMed] [Google Scholar]
  10. Calamia J., Manoil C. lac permease of Escherichia coli: topology and sequence elements promoting membrane insertion. Proc Natl Acad Sci U S A. 1990 Jul;87(13):4937–4941. doi: 10.1073/pnas.87.13.4937. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Collins J. C., Permuth S. F., Brooker R. J. Isolation and characterization of lactose permease mutants with an enhanced recognition of maltose and diminished recognition of cellobiose. J Biol Chem. 1989 Sep 5;264(25):14698–14703. [PubMed] [Google Scholar]
  12. Crane R. K. The gradient hypothesis and other models of carrier-mediated active transport. Rev Physiol Biochem Pharmacol. 1977;78:99–159. doi: 10.1007/BFb0027722. [DOI] [PubMed] [Google Scholar]
  13. Eddy A. A., Nowacki J. A. Stoicheiometrical proton and potassium ion movements accompanying the absorption of amino acids by the yeast Saccharomyces carlsbergensis. Biochem J. 1971 May;122(5):701–711. doi: 10.1042/bj1220701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Foster D. L., Boublik M., Kaback H. R. Structure of the lac carrier protein of Escherichia coli. J Biol Chem. 1983 Jan 10;258(1):31–34. [PubMed] [Google Scholar]
  15. Franco P. J., Brooker R. J. Evidence that the asparagine 322 mutant of the lactose permease transports protons and lactose with a normal stoichiometry and accumulates lactose against a concentration gradient. J Biol Chem. 1991 Apr 15;266(11):6693–6699. [PubMed] [Google Scholar]
  16. Franco P. J., Eelkema J. A., Brooker R. J. Isolation and characterization of thiodigalactoside-resistant mutants of the lactose permease which possess an enhanced recognition for maltose. J Biol Chem. 1989 Sep 25;264(27):15988–15992. [PubMed] [Google Scholar]
  17. Goswitz V. C., Brooker R. J. Isolation of lactose permease mutants which recognize arabinose. Membr Biochem. 1993 Jan-Mar;10(1):61–70. doi: 10.3109/09687689309150253. [DOI] [PubMed] [Google Scholar]
  18. Hengge R., Boos W. Maltose and lactose transport in Escherichia coli. Examples of two different types of concentrative transport systems. Biochim Biophys Acta. 1983 Aug 11;737(3-4):443–478. doi: 10.1016/0304-4157(83)90009-6. [DOI] [PubMed] [Google Scholar]
  19. Höfer M., Misra P. C. Evidence for a proton/sugar symport in the yeast Rhodotorula gracilis (glutinis). Biochem J. 1978 Apr 15;172(1):15–22. doi: 10.1042/bj1720015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kellermann O., Szmelcman S. Active transport of maltose in Escherichia coli K12. Involvement of a "periplasmic" maltose binding protein. Eur J Biochem. 1974 Aug 15;47(1):139–149. doi: 10.1111/j.1432-1033.1974.tb03677.x. [DOI] [PubMed] [Google Scholar]
  21. King S. C., Hansen C. L., Wilson T. H. The interaction between aspartic acid 237 and lysine 358 in the lactose carrier of Escherichia coli. Biochim Biophys Acta. 1991 Feb 25;1062(2):177–186. doi: 10.1016/0005-2736(91)90390-t. [DOI] [PubMed] [Google Scholar]
  22. King S. C., Wilson T. H. Identification of valine 177 as a mutation altering specificity for transport of sugars by the Escherichia coli lactose carrier. Enhanced specificity for sucrose and maltose. J Biol Chem. 1990 Jun 15;265(17):9638–9644. [PubMed] [Google Scholar]
  23. Komor E. Proton-coupled hexose transport in Chlorella vulgaris. FEBS Lett. 1973 Dec 15;38(1):16–18. doi: 10.1016/0014-5793(73)80501-0. [DOI] [PubMed] [Google Scholar]
  24. Mandel M., Higa A. Calcium-dependent bacteriophage DNA infection. J Mol Biol. 1970 Oct 14;53(1):159–162. doi: 10.1016/0022-2836(70)90051-3. [DOI] [PubMed] [Google Scholar]
  25. Markgraf M., Bocklage H., Müller-Hill B. A change of threonine 266 to isoleucine in the lac permease of Escherichia coli diminishes the transport of lactose and increases the transport of maltose. Mol Gen Genet. 1985;198(3):473–475. doi: 10.1007/BF00332941. [DOI] [PubMed] [Google Scholar]
  26. Olsen S. G., Brooker R. J. Analysis of the structural specificity of the lactose permease toward sugars. J Biol Chem. 1989 Sep 25;264(27):15982–15987. [PubMed] [Google Scholar]
  27. Reyes M., Treptow N. A., Shuman H. A. Transport of p-nitrophenyl-alpha-maltoside by the maltose transport system of Escherichia coli and its subsequent hydrolysis by a cytoplasmic alpha-maltosidase. J Bacteriol. 1986 Mar;165(3):918–922. doi: 10.1128/jb.165.3.918-922.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Roepe P. D., Consler T. G., Menezes M. E., Kaback H. R. The lac permease of Escherichia coli: site-directed mutagenesis studies on the mechanism of beta-galactoside/H+ symport. Res Microbiol. 1990 Mar-Apr;141(3):290–308. doi: 10.1016/0923-2508(90)90003-9. [DOI] [PubMed] [Google Scholar]
  29. Shuman H. A. Active transport of maltose in Escherichia coli K12. Role of the periplasmic maltose-binding protein and evidence for a substrate recognition site in the cytoplasmic membrane. J Biol Chem. 1982 May 25;257(10):5455–5461. [PubMed] [Google Scholar]
  30. Shuman H. A., Beckwith J. Escherichia coli K-12 mutants that allow transport of maltose via the beta-galactoside transport system. J Bacteriol. 1979 Jan;137(1):365–373. doi: 10.1128/jb.137.1.365-373.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Slayman C. L., Slayman C. W. Depolarization of the plasma membrane of Neurospora during active transport of glucose: evidence for a proton-dependent cotransport system. Proc Natl Acad Sci U S A. 1974 May;71(5):1935–1939. doi: 10.1073/pnas.71.5.1935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Szmelcman S., Schwartz M., Silhavy T. J., Boos W. Maltose transport in Escherichia coli K12. A comparison of transport kinetics in wild-type and lambda-resistant mutants as measured by fluorescence quenching. Eur J Biochem. 1976 May 17;65(1):13–19. doi: 10.1111/j.1432-1033.1976.tb10383.x. [DOI] [PubMed] [Google Scholar]
  33. Teather R. M., Bramhall J., Riede I., Wright J. K., Fürst M., Aichele G., Wilhelm U., Overath P. Lactose carrier protein of Escherichia coli. Structure and expression of plasmids carrying the Y gene of the lac operon. Eur J Biochem. 1980;108(1):223–231. doi: 10.1111/j.1432-1033.1980.tb04715.x. [DOI] [PubMed] [Google Scholar]
  34. Teather R. M., Müller-Hill B., Abrutsch U., Aichele G., Overath P. Amplification of the lactose carrier protein in Escherichia coli using a plasmid vector. Mol Gen Genet. 1978 Feb 27;159(3):239–248. doi: 10.1007/BF00268260. [DOI] [PubMed] [Google Scholar]
  35. West I. C. Lactose transport coupled to proton movements in Escherichia coli. Biochem Biophys Res Commun. 1970 Nov 9;41(3):655–661. doi: 10.1016/0006-291x(70)90063-x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES