Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1993 Oct;175(19):6293–6298. doi: 10.1128/jb.175.19.6293-6298.1993

Induction of EcoRII methyltransferase: evidence for autogenous control.

S Friedman 1, S Som 1
PMCID: PMC206726  PMID: 7691793

Abstract

The cytosine analog 5-azacytidine kills Escherichia coli cells that carry plasmids expressing EcoRII DNA (cytosine 5)methyltransferase under control of its own promoter. We previously showed that this enzyme binds tightly to azacytidine-containing DNA in vitro and proposed that such binding is lethal in vivo. In support of this proposal, we now show that the enzyme sediments with the nucleoid of azacytidine-treated cells. Azacytidine treatment led to an increase in the amount of enzyme, and this increase required sequences in the ecoRIIM promoter region. Enzyme inducibility correlated with drug sensitivity: plasmids carrying the methyltransferase gene but lacking the wild-type promoter did not confer sensitivity. These results suggested that the ecoRIIM gene was under autogenous control. Transcriptional ecoRIIM'-lacZ fusions in E. coli were, therefore, constructed. They showed that expression from the ecoRIIM promoter was inhibited when EcoRII DNA (cytosine-5)methyltransferase was introduced into the cell in trans and inhibition was reversed by treating the cells with azacytidine. These results provide evidence that the expression of the ecoRIIM gene is under autogenous regulation and that cell death induced by azacytidine is due, in part, to the disruption of autoregulation.

Full text

PDF
6293

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barbé J., Gibert I., Guerrero R. 5-Azacytidine: survival and induction of the SOS response in Escherichia coli K-12. Mutat Res. 1986 Jul;166(1):9–16. doi: 10.1016/0167-8817(86)90035-0. [DOI] [PubMed] [Google Scholar]
  2. Bhagwat A. S., Roberts R. J. Genetic analysis of the 5-azacytidine sensitivity of Escherichia coli K-12. J Bacteriol. 1987 Apr;169(4):1537–1546. doi: 10.1128/jb.169.4.1537-1546.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Doskocil J., Paces V., Sorm F. Inhibition of protein synthesis by 5-azacytidine in Escherichia coli. Biochim Biophys Acta. 1967;145(3):771–779. [PubMed] [Google Scholar]
  4. Esen A. A simple method for quantitative, semiquantitative, and qualitative assay of protein. Anal Biochem. 1978 Aug 15;89(1):264–273. doi: 10.1016/0003-2697(78)90749-2. [DOI] [PubMed] [Google Scholar]
  5. Friedman S. Bactericidal effect of 5-azacytidine on Escherichia coli carrying EcoRII restriction-modification enzymes. J Bacteriol. 1982 Jul;151(1):262–268. doi: 10.1128/jb.151.1.262-268.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Friedman S. Binding of the EcoRII methylase to azacytosine-containing DNA. Nucleic Acids Res. 1986 Jun 11;14(11):4543–4556. doi: 10.1093/nar/14.11.4543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Friedman S., Som S., Yang L. F. The core element of the EcoRII methylase as defined by protease digestion and deletion analysis. Nucleic Acids Res. 1991 Oct 11;19(19):5403–5408. doi: 10.1093/nar/19.19.5403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Friedman S. The effect of 5-azacytidine on E. coli DNA methylase. Biochem Biophys Res Commun. 1979 Aug 28;89(4):1328–1333. doi: 10.1016/0006-291x(79)92154-5. [DOI] [PubMed] [Google Scholar]
  9. Friedman S. The inhibition of DNA(cytosine-5)methylases by 5-azacytidine. The effect of azacytosine-containing DNA. Mol Pharmacol. 1981 Mar;19(2):314–320. [PubMed] [Google Scholar]
  10. Friedman S. The irreversible binding of azacytosine-containing DNA fragments to bacterial DNA(cytosine-5)methyltransferases. J Biol Chem. 1985 May 10;260(9):5698–5705. [PubMed] [Google Scholar]
  11. Haseltine W. A., Lindan C. P., D'Andrea A. D., Johnsrud L. The use of DNA fragments of defined sequence for the study of DNA damage and repair. Methods Enzymol. 1980;65(1):235–248. doi: 10.1016/s0076-6879(80)65033-2. [DOI] [PubMed] [Google Scholar]
  12. Hecht R. M., Stimpson D., Pettijohn D. Sedimentation properties of the bacterial chromosome as an isolated nucleoid and as an unfolded DNA fiber. Chromosomal DNA folding measured by rotor speed effects. J Mol Biol. 1977 Apr 15;111(3):257–277. doi: 10.1016/s0022-2836(77)80051-x. [DOI] [PubMed] [Google Scholar]
  13. Huang Y. C., Friedman S. Inhibition of recA-mediated strand exchange by adducts of azacytosine-containing DNA and the EcoRII methylase. J Biol Chem. 1991 Sep 15;266(26):17424–17429. [PubMed] [Google Scholar]
  14. Ives C. L., Nathan P. D., Brooks J. E. Regulation of the BamHI restriction-modification system by a small intergenic open reading frame, bamHIC, in both Escherichia coli and Bacillus subtilis. J Bacteriol. 1992 Nov;174(22):7194–7201. doi: 10.1128/jb.174.22.7194-7201.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  16. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  17. Lal D., Som S., Friedman S. Survival and mutagenic effects of 5-azacytidine in Escherichia coli. Mutat Res. 1988 May;193(3):229–236. doi: 10.1016/0167-8817(88)90033-8. [DOI] [PubMed] [Google Scholar]
  18. Marinus M. G. Location of DNA methylation genes on the Escherichia coli K-12 genetic map. Mol Gen Genet. 1973 Dec 14;127(1):47–55. doi: 10.1007/BF00267782. [DOI] [PubMed] [Google Scholar]
  19. Simons R. W., Houman F., Kleckner N. Improved single and multicopy lac-based cloning vectors for protein and operon fusions. Gene. 1987;53(1):85–96. doi: 10.1016/0378-1119(87)90095-3. [DOI] [PubMed] [Google Scholar]
  20. Som S., Bhagwat A. S., Friedman S. Nucleotide sequence and expression of the gene encoding the EcoRII modification enzyme. Nucleic Acids Res. 1987 Jan 12;15(1):313–332. doi: 10.1093/nar/15.1.313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Tao T., Bourne J. C., Blumenthal R. M. A family of regulatory genes associated with type II restriction-modification systems. J Bacteriol. 1991 Feb;173(4):1367–1375. doi: 10.1128/jb.173.4.1367-1375.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. VanBogelen R. A., Kelley P. M., Neidhardt F. C. Differential induction of heat shock, SOS, and oxidation stress regulons and accumulation of nucleotides in Escherichia coli. J Bacteriol. 1987 Jan;169(1):26–32. doi: 10.1128/jb.169.1.26-32.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES