Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Albe K. R., Butler M. H., Wright B. E. Cellular concentrations of enzymes and their substrates. J Theor Biol. 1990 Mar 22;143(2):163–195. doi: 10.1016/s0022-5193(05)80266-8. [DOI] [PubMed] [Google Scholar]
- Anderson K. S., Miles E. W., Johnson K. A. Serine modulates substrate channeling in tryptophan synthase. A novel intersubunit triggering mechanism. J Biol Chem. 1991 May 5;266(13):8020–8033. [PubMed] [Google Scholar]
- Chiu C. S., Cook K. S., Greenberg G. R. Characteristics of a bacteriophage T4-induced complex synthesizing deoxyribonucleotides. J Biol Chem. 1982 Dec 25;257(24):15087–15097. [PubMed] [Google Scholar]
- Chiu C. S., Greenberg G. R. Mutagenic effect of temperature-sensitive mutants of gene 42 (dCMP hydroxymethylase) of bacteriophage T4. J Virol. 1973 Jul;12(1):199–201. doi: 10.1128/jvi.12.1.199-201.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chock P. B., Gutfreund H. Reexamination of the kinetics of the transfer of NADH between its complexes with glycerol-3-phosphate dehydrogenase and with lactate dehydrogenase. Proc Natl Acad Sci U S A. 1988 Dec;85(23):8870–8874. doi: 10.1073/pnas.85.23.8870. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fulton A. B. How crowded is the cytoplasm? Cell. 1982 Sep;30(2):345–347. doi: 10.1016/0092-8674(82)90231-8. [DOI] [PubMed] [Google Scholar]
- Ji J. P., Mathews C. K. Analysis of mutagenesis induced by a thermolabile T4 phage deoxycytidylate hydroxymethylase suggests localized deoxyribonucleotide pool imbalance. Mol Gen Genet. 1991 Apr;226(1-2):257–264. doi: 10.1007/BF00273611. [DOI] [PubMed] [Google Scholar]
- Manwaring J. D., Fuchs J. A. Relationship between deoxyribonucleoside triphosphate pools and deoxyribonucleic acid synthesis in an nrdA mutant of Escherichia coli. J Bacteriol. 1979 Apr;138(1):245–248. doi: 10.1128/jb.138.1.245-248.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mathews C. K. Enzyme organization in DNA precursor biosynthesis. Prog Nucleic Acid Res Mol Biol. 1993;44:167–203. doi: 10.1016/s0079-6603(08)60220-2. [DOI] [PubMed] [Google Scholar]
- Mathews C. K., Ji J. DNA precursor asymmetries, replication fidelity, and variable genome evolution. Bioessays. 1992 May;14(5):295–301. doi: 10.1002/bies.950140502. [DOI] [PubMed] [Google Scholar]
- Mathews C. K., Sinha N. K. Are DNA precursors concentrated at replication sites? Proc Natl Acad Sci U S A. 1982 Jan;79(2):302–306. doi: 10.1073/pnas.79.2.302. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McConkey E. H. Molecular evolution, intracellular organization, and the quinary structure of proteins. Proc Natl Acad Sci U S A. 1982 May;79(10):3236–3240. doi: 10.1073/pnas.79.10.3236. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Osawa T., Tsuji T. Fractionation and structural assessment of oligosaccharides and glycopeptides by use of immobilized lectins. Annu Rev Biochem. 1987;56:21–42. doi: 10.1146/annurev.bi.56.070187.000321. [DOI] [PubMed] [Google Scholar]
- Ovádi J. Old pathway--new concept: control of glycolysis by metabolite-modulated dynamic enzyme associations. Trends Biochem Sci. 1988 Dec;13(12):486–490. doi: 10.1016/0968-0004(88)90237-x. [DOI] [PubMed] [Google Scholar]
- Pato M. L. Alterations of deoxyribonucleoside triphosphate pools in Escherichia coli: effects on deoxyribonucleic acid replication and evidence for compartmentation. J Bacteriol. 1979 Nov;140(2):518–524. doi: 10.1128/jb.140.2.518-524.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reddy G. P., Singh A., Stafford M. E., Mathews C. K. Enzyme associations in T4 phage DNA precursor synthesis. Proc Natl Acad Sci U S A. 1977 Aug;74(8):3152–3156. doi: 10.1073/pnas.74.8.3152. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith G. K., Mueller W. T., Wasserman G. F., Taylor W. D., Benkovic S. J. Characterization of the enzyme complex involving the folate-requiring enzymes of de novo purine biosynthesis. Biochemistry. 1980 Sep 2;19(18):4313–4321. doi: 10.1021/bi00559a026. [DOI] [PubMed] [Google Scholar]
- Srivastava D. K., Bernhard S. A. Metabolite transfer via enzyme-enzyme complexes. Science. 1986 Nov 28;234(4780):1081–1086. doi: 10.1126/science.3775377. [DOI] [PubMed] [Google Scholar]
- Thylén C., Mathews C. K. Essential role of T4 phage deoxycytidylate hydroxymethylase in a multienzyme complex for deoxyribonucleotide synthesis. J Biol Chem. 1989 Sep 15;264(26):15169–15172. [PubMed] [Google Scholar]
- Welch G. R., Gaertner F. H. Influence of an aggregated multienzyme system on transient time: kinetic evidence for compartmentation by an aromatic-amino-acid synthesizing complex of Neurospora crassa. Proc Natl Acad Sci U S A. 1975 Nov;72(11):4218–4222. doi: 10.1073/pnas.72.11.4218. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wheeler L., Wang Y., Mathews C. K. Specific associations of T4 bacteriophage proteins with immobilized deoxycytidylate hydroxymethylase. J Biol Chem. 1992 Apr 15;267(11):7664–7670. [PubMed] [Google Scholar]
- Williams W. E., Drake J. W. Mutator mutations in bacteriophage T4 gene 42 (dHMC hydroxymethylase). Genetics. 1977 Jul;86(3):501–511. doi: 10.1093/genetics/86.3.501. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Young J. P., Mathews C. K. Interactions between T4 phage-coded deoxycytidylate hydroxymethylase and thymidylate synthase as revealed with an anti-idiotypic antibody. J Biol Chem. 1992 May 25;267(15):10786–10790. [PubMed] [Google Scholar]