Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1993 Oct;175(20):6377–6381. doi: 10.1128/jb.175.20.6377-6381.1993

The cell-bag of enzymes or network of channels?

C K Mathews 1
PMCID: PMC206744  PMID: 8407814

Full text

PDF
6377

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albe K. R., Butler M. H., Wright B. E. Cellular concentrations of enzymes and their substrates. J Theor Biol. 1990 Mar 22;143(2):163–195. doi: 10.1016/s0022-5193(05)80266-8. [DOI] [PubMed] [Google Scholar]
  2. Anderson K. S., Miles E. W., Johnson K. A. Serine modulates substrate channeling in tryptophan synthase. A novel intersubunit triggering mechanism. J Biol Chem. 1991 May 5;266(13):8020–8033. [PubMed] [Google Scholar]
  3. Chiu C. S., Cook K. S., Greenberg G. R. Characteristics of a bacteriophage T4-induced complex synthesizing deoxyribonucleotides. J Biol Chem. 1982 Dec 25;257(24):15087–15097. [PubMed] [Google Scholar]
  4. Chiu C. S., Greenberg G. R. Mutagenic effect of temperature-sensitive mutants of gene 42 (dCMP hydroxymethylase) of bacteriophage T4. J Virol. 1973 Jul;12(1):199–201. doi: 10.1128/jvi.12.1.199-201.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chock P. B., Gutfreund H. Reexamination of the kinetics of the transfer of NADH between its complexes with glycerol-3-phosphate dehydrogenase and with lactate dehydrogenase. Proc Natl Acad Sci U S A. 1988 Dec;85(23):8870–8874. doi: 10.1073/pnas.85.23.8870. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fulton A. B. How crowded is the cytoplasm? Cell. 1982 Sep;30(2):345–347. doi: 10.1016/0092-8674(82)90231-8. [DOI] [PubMed] [Google Scholar]
  7. Ji J. P., Mathews C. K. Analysis of mutagenesis induced by a thermolabile T4 phage deoxycytidylate hydroxymethylase suggests localized deoxyribonucleotide pool imbalance. Mol Gen Genet. 1991 Apr;226(1-2):257–264. doi: 10.1007/BF00273611. [DOI] [PubMed] [Google Scholar]
  8. Manwaring J. D., Fuchs J. A. Relationship between deoxyribonucleoside triphosphate pools and deoxyribonucleic acid synthesis in an nrdA mutant of Escherichia coli. J Bacteriol. 1979 Apr;138(1):245–248. doi: 10.1128/jb.138.1.245-248.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Mathews C. K. Enzyme organization in DNA precursor biosynthesis. Prog Nucleic Acid Res Mol Biol. 1993;44:167–203. doi: 10.1016/s0079-6603(08)60220-2. [DOI] [PubMed] [Google Scholar]
  10. Mathews C. K., Ji J. DNA precursor asymmetries, replication fidelity, and variable genome evolution. Bioessays. 1992 May;14(5):295–301. doi: 10.1002/bies.950140502. [DOI] [PubMed] [Google Scholar]
  11. Mathews C. K., Sinha N. K. Are DNA precursors concentrated at replication sites? Proc Natl Acad Sci U S A. 1982 Jan;79(2):302–306. doi: 10.1073/pnas.79.2.302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. McConkey E. H. Molecular evolution, intracellular organization, and the quinary structure of proteins. Proc Natl Acad Sci U S A. 1982 May;79(10):3236–3240. doi: 10.1073/pnas.79.10.3236. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Osawa T., Tsuji T. Fractionation and structural assessment of oligosaccharides and glycopeptides by use of immobilized lectins. Annu Rev Biochem. 1987;56:21–42. doi: 10.1146/annurev.bi.56.070187.000321. [DOI] [PubMed] [Google Scholar]
  14. Ovádi J. Old pathway--new concept: control of glycolysis by metabolite-modulated dynamic enzyme associations. Trends Biochem Sci. 1988 Dec;13(12):486–490. doi: 10.1016/0968-0004(88)90237-x. [DOI] [PubMed] [Google Scholar]
  15. Pato M. L. Alterations of deoxyribonucleoside triphosphate pools in Escherichia coli: effects on deoxyribonucleic acid replication and evidence for compartmentation. J Bacteriol. 1979 Nov;140(2):518–524. doi: 10.1128/jb.140.2.518-524.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Reddy G. P., Singh A., Stafford M. E., Mathews C. K. Enzyme associations in T4 phage DNA precursor synthesis. Proc Natl Acad Sci U S A. 1977 Aug;74(8):3152–3156. doi: 10.1073/pnas.74.8.3152. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Smith G. K., Mueller W. T., Wasserman G. F., Taylor W. D., Benkovic S. J. Characterization of the enzyme complex involving the folate-requiring enzymes of de novo purine biosynthesis. Biochemistry. 1980 Sep 2;19(18):4313–4321. doi: 10.1021/bi00559a026. [DOI] [PubMed] [Google Scholar]
  18. Srivastava D. K., Bernhard S. A. Metabolite transfer via enzyme-enzyme complexes. Science. 1986 Nov 28;234(4780):1081–1086. doi: 10.1126/science.3775377. [DOI] [PubMed] [Google Scholar]
  19. Thylén C., Mathews C. K. Essential role of T4 phage deoxycytidylate hydroxymethylase in a multienzyme complex for deoxyribonucleotide synthesis. J Biol Chem. 1989 Sep 15;264(26):15169–15172. [PubMed] [Google Scholar]
  20. Welch G. R., Gaertner F. H. Influence of an aggregated multienzyme system on transient time: kinetic evidence for compartmentation by an aromatic-amino-acid synthesizing complex of Neurospora crassa. Proc Natl Acad Sci U S A. 1975 Nov;72(11):4218–4222. doi: 10.1073/pnas.72.11.4218. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Wheeler L., Wang Y., Mathews C. K. Specific associations of T4 bacteriophage proteins with immobilized deoxycytidylate hydroxymethylase. J Biol Chem. 1992 Apr 15;267(11):7664–7670. [PubMed] [Google Scholar]
  22. Williams W. E., Drake J. W. Mutator mutations in bacteriophage T4 gene 42 (dHMC hydroxymethylase). Genetics. 1977 Jul;86(3):501–511. doi: 10.1093/genetics/86.3.501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Young J. P., Mathews C. K. Interactions between T4 phage-coded deoxycytidylate hydroxymethylase and thymidylate synthase as revealed with an anti-idiotypic antibody. J Biol Chem. 1992 May 25;267(15):10786–10790. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES