Abstract
Cellulolytic strains of Bacillus stearothermophilus were isolated from nature and screened for the presence of activities associated with the degradation of plant cell walls. One isolate (strain XL-65-6) which exhibited strong activities with 4-methylumbelliferyl-beta-D-glucopyranoside (MUG) and 4-methylumbelliferyl-beta-D-cellobiopyranoside (MUC) was used to construct a gene library in Escherichia coli. Clones degrading these model substrates were found to encode the cellobiose-specific genes of the phosphoenolpyruvate-dependent phosphotransferase system (PTS). Both MUG and MUC activities were present together, and both activities were lost concurrently during subcloning experiments. A functional E. coli ptsI gene was required for MUC and MUG activities (presumably a ptsH gene also). The DNA fragment from B. stearothermophilus contained four open reading frames which appear to form a cel operon. Intergenic stop codons for celA, celB, and celC overlapped the ribosomal binding sites of the respective downstream genes. Frameshift mutations or deletions in celA, celB, and celD were individually shown to result in a loss of MUC and MUG activities. On the basis of amino acid sequence homology and hydropathy plots of translated sequences, celA and celB were identified as encoding PTS enzyme II and celD was identified as encoding PTS enzyme III. These translated sequences were remarkably similar to their respective E. coli homologs for cellobiose transport. No reported sequences exhibited a high level of homology with the celC gene product. The predicted carboxy-terminal region for celC was similar to the corresponding region of E. coli celF, a phospho-beta-glucosidase. An incomplete regulatory gene (celR) and proposed promoter sequence were located 5' to the proposed cel operon. A stem-loop resembling a rho-independent terminator was present immediately downstream from celD. These results indicate that B. stearothermophilus XL-65-6 contains a cellobiose-specific PTS for cellobiose uptake. Similar systems may be present in other gram-positive bacteria.
Full text
PDF









Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alpert C. A., Chassy B. M. Molecular cloning and DNA sequence of lacE, the gene encoding the lactose-specific enzyme II of the phosphotransferase system of Lactobacillus casei. Evidence that a cysteine residue is essential for sugar phosphorylation. J Biol Chem. 1990 Dec 25;265(36):22561–22568. [PubMed] [Google Scholar]
- Alpert C. A., Chassy B. M. Molecular cloning and nucleotide sequence of the factor IIIlac gene of Lactobacillus casei. Gene. 1988;62(2):277–288. doi: 10.1016/0378-1119(88)90565-3. [DOI] [PubMed] [Google Scholar]
- Breidt F., Jr, Hengstenberg W., Finkeldei U., Stewart G. C. Identification of the genes for the lactose-specific components of the phosphotransferase system in the lac operon of Staphylococcus aureus. J Biol Chem. 1987 Dec 5;262(34):16444–16449. [PubMed] [Google Scholar]
- Brown B. J., Preston J. F., Ingram L. O. Cloning of alginate lyase gene (alxM) and expression in Escherichia coli. Appl Environ Microbiol. 1991 Jun;57(6):1870–1872. doi: 10.1128/aem.57.6.1870-1872.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Davies G. J., Littlechild J. A., Watson H. C., Hall L. Sequence and expression of the gene encoding 3-phosphoglycerate kinase from Bacillus stearothermophilus. Gene. 1991 Dec 20;109(1):39–45. doi: 10.1016/0378-1119(91)90586-z. [DOI] [PubMed] [Google Scholar]
- Debarbouille M., Arnaud M., Fouet A., Klier A., Rapoport G. The sacT gene regulating the sacPA operon in Bacillus subtilis shares strong homology with transcriptional antiterminators. J Bacteriol. 1990 Jul;172(7):3966–3973. doi: 10.1128/jb.172.7.3966-3973.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Débarbouillé M., Martin-Verstraete I., Klier A., Rapoport G. The transcriptional regulator LevR of Bacillus subtilis has domains homologous to both sigma 54- and phosphotransferase system-dependent regulators. Proc Natl Acad Sci U S A. 1991 Mar 15;88(6):2212–2216. doi: 10.1073/pnas.88.6.2212. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FRAENKEL D. G., FALCOZ-KELLY F., HORECKER B. L. THE UTILIZATION OF GLUCOSE 6-PHOSPHATE BY GLUCOKINASELESS AND WILD-TYPE STRAINS OF ESCHERICHIA COLI. Proc Natl Acad Sci U S A. 1964 Nov;52:1207–1213. doi: 10.1073/pnas.52.5.1207. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fouet A., Arnaud M., Klier A., Rapoport G. Bacillus subtilis sucrose-specific enzyme II of the phosphotransferase system: expression in Escherichia coli and homology to enzymes II from enteric bacteria. Proc Natl Acad Sci U S A. 1987 Dec;84(24):8773–8777. doi: 10.1073/pnas.84.24.8773. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hall B. G., Faunce W., 3rd Functional genes for cellobiose utilization in natural isolates of Escherichia coli. J Bacteriol. 1987 Jun;169(6):2713–2717. doi: 10.1128/jb.169.6.2713-2717.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hall B. G., Xu L. Nucleotide sequence, function, activation, and evolution of the cryptic asc operon of Escherichia coli K12. Mol Biol Evol. 1992 Jul;9(4):688–706. doi: 10.1093/oxfordjournals.molbev.a040753. [DOI] [PubMed] [Google Scholar]
- Hengstenberg W., Reiche B., Eisermann R., Fischer R., Kessler U., Tarrach A., De Vos W. M., Kalbitzer H. R., Glaser S. Structure and function of proteins involved in sugar transport by the PTS of gram-positive bacteria. FEMS Microbiol Rev. 1989 Jun;5(1-2):35–42. doi: 10.1111/j.1574-6968.1989.tb14098.x. [DOI] [PubMed] [Google Scholar]
- Higgins D. G., Bleasby A. J., Fuchs R. CLUSTAL V: improved software for multiple sequence alignment. Comput Appl Biosci. 1992 Apr;8(2):189–191. doi: 10.1093/bioinformatics/8.2.189. [DOI] [PubMed] [Google Scholar]
- Klein P., Kanehisa M., DeLisi C. The detection and classification of membrane-spanning proteins. Biochim Biophys Acta. 1985 May 28;815(3):468–476. doi: 10.1016/0005-2736(85)90375-x. [DOI] [PubMed] [Google Scholar]
- Koransky J. R., Allen S. D., Dowell V. R., Jr Use of ethanol for selective isolation of sporeforming microorganisms. Appl Environ Microbiol. 1978 Apr;35(4):762–765. doi: 10.1128/aem.35.4.762-765.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
- Parker L. L., Hall B. G. Characterization and nucleotide sequence of the cryptic cel operon of Escherichia coli K12. Genetics. 1990 Mar;124(3):455–471. doi: 10.1093/genetics/124.3.455. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reizer J., Reizer A., Saier M. H., Jr The cellobiose permease of Escherichia coli consists of three proteins and is homologous to the lactose permease of Staphylococcus aureus. Res Microbiol. 1990 Nov-Dec;141(9):1061–1067. doi: 10.1016/0923-2508(90)90079-6. [DOI] [PubMed] [Google Scholar]
- Roberts R. J., Macelis D. Restriction enzymes and their isoschizomers. Nucleic Acids Res. 1992 May 11;20 (Suppl):2167–2180. doi: 10.1093/nar/20.suppl.2167. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rosenberg M., Court D. Regulatory sequences involved in the promotion and termination of RNA transcription. Annu Rev Genet. 1979;13:319–353. doi: 10.1146/annurev.ge.13.120179.001535. [DOI] [PubMed] [Google Scholar]
- Saier M. H., Jr, Reizer J. Proposed uniform nomenclature for the proteins and protein domains of the bacterial phosphoenolpyruvate: sugar phosphotransferase system. J Bacteriol. 1992 Mar;174(5):1433–1438. doi: 10.1128/jb.174.5.1433-1438.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sakoda H., Imanaka T. Cloning and sequencing of the gene coding for alcohol dehydrogenase of Bacillus stearothermophilus and rational shift of the optimum pH. J Bacteriol. 1992 Feb;174(4):1397–1402. doi: 10.1128/jb.174.4.1397-1402.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zukowski M. M., Miller L., Cosgwell P., Chen K., Aymerich S., Steinmetz M. Nucleotide sequence of the sacS locus of Bacillus subtilis reveals the presence of two regulatory genes. Gene. 1990 May 31;90(1):153–155. doi: 10.1016/0378-1119(90)90453-x. [DOI] [PubMed] [Google Scholar]
- de Vos W. M., Boerrigter I., van Rooyen R. J., Reiche B., Hengstenberg W. Characterization of the lactose-specific enzymes of the phosphotransferase system in Lactococcus lactis. J Biol Chem. 1990 Dec 25;265(36):22554–22560. [PubMed] [Google Scholar]
- el Hassouni M., Henrissat B., Chippaux M., Barras F. Nucleotide sequences of the arb genes, which control beta-glucoside utilization in Erwinia chrysanthemi: comparison with the Escherichia coli bgl operon and evidence for a new beta-glycohydrolase family including enzymes from eubacteria, archeabacteria, and humans. J Bacteriol. 1992 Feb;174(3):765–777. doi: 10.1128/jb.174.3.765-777.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
