Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1993 Oct;175(20):6505–6511. doi: 10.1128/jb.175.20.6505-6511.1993

Threonine formation via the coupled activity of 2-amino-3-ketobutyrate coenzyme A lyase and threonine dehydrogenase.

J P Marcus 1, E E Dekker 1
PMCID: PMC206760  PMID: 8407827

Abstract

The enzymes L-threonine dehydrogenase and 2-amino-3-ketobutyrate coenzyme A (CoA) lyase are known to catalyze the net conversion of L-threonine plus NAD+ plus CoA to NADH plus glycine plus acetyl-CoA. When homogeneous preparations of these two enzymes from Escherichia coli were incubated together for 40 min at 25 degrees C with glycine, acetyl-CoA, and NADH, a 36% decrease in the level of glycine (with concomitant NADH oxidation) was matched by formation of an equivalent amount of threonine, indicating that this coupled sequence of enzyme-catalyzed reactions is reversible in vitro. Several experimental factors that affect the efficiency of this conversion in vitro were examined. A constructed strain of E. coli, MD901 (glyA thrB/C tdh), was unable to grow unless both glycine and threonine were added to defined rich medium. Introduction of the plasmid pDR121 (tdh+kbl+) into this strain enabled the cells to grow in the presence of either added glycine or threonine, indicating that interconversion of these two amino acids occurred. Threonine that was isolated from the total pool of cellular protein of MD901/pDR121 had the same specific radioactivity as the [14C]glycine added to the medium, establishing that threonine was formed exclusively from glycine in this strain. Comparative growth rate studies with several strains of E. coli containing plasmid pDR121, together with the finding that kcat values of pure E. coli 2-amino-3-ketobutyrate CoA lyase favor the cleavage of 2-amino-3-ketobutyrate over its formation by a factor of 50, indicate that the biosynthesis of threonine is less efficient than glycine formation via the coupled threonine dehydrogenase-2-amino-3-ketobutyrate lyase reactions.

Full text

PDF
6505

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aoyama Y., Motokawa Y. L-Threonine dehydrogenase of chicken liver. Purification, characterization, and physiological significance. J Biol Chem. 1981 Dec 10;256(23):12367–12373. [PubMed] [Google Scholar]
  2. Bird M. I., Nunn P. B. Metabolic homoeostasis of L-threonine in the normally-fed rat. Importance of liver threonine dehydrogenase activity. Biochem J. 1983 Sep 15;214(3):687–694. doi: 10.1042/bj2140687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Boylan S. A., Dekker E. E. Growth, enzyme levels, and some metabolic properties of an Escherichia coli mutant grown on L-threonine as the sole carbon source. J Bacteriol. 1983 Oct;156(1):273–280. doi: 10.1128/jb.156.1.273-280.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Boylan S. A., Dekker E. E. L-threonine dehydrogenase. Purification and properties of the homogeneous enzyme from Escherichia coli K-12. J Biol Chem. 1981 Feb 25;256(4):1809–1815. [PubMed] [Google Scholar]
  5. Campbell R. L., Dekker E. E. Formation of D-1-amino-2-propanol from L-threonine by enzymes from Escherichia coli K-12. Biochem Biophys Res Commun. 1973 Jul 17;53(2):432–438. doi: 10.1016/0006-291x(73)90680-3. [DOI] [PubMed] [Google Scholar]
  6. Chan T. T., Newman E. B. Threonine as a carbon source for Escherichia coli. J Bacteriol. 1981 Mar;145(3):1150–1153. doi: 10.1128/jb.145.3.1150-1153.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dale R. A. Catabolism of threonine in mammals by coupling of L-threonine 3-dehydrogenase with 2-amino-3-oxobutyrate-CoA ligase. Biochim Biophys Acta. 1978 Dec 18;544(3):496–503. doi: 10.1016/0304-4165(78)90324-0. [DOI] [PubMed] [Google Scholar]
  8. GIBSON K. D., LAVER W. G., NEUBERGER A. Initial stages in the biosynthesis of porphyrins. 2. The formation of delta-aminolaevulic acid from glycine and succinyl-coenzyme A by particles from chicken erythrocytes. Biochem J. 1958 Sep;70(1):71–81. doi: 10.1042/bj0700071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Goss T. J., Datta P. Molecular cloning and expression of the biodegradative threonine dehydratase gene (tdc) of Escherichia coli K12. Mol Gen Genet. 1985;201(2):308–314. doi: 10.1007/BF00425676. [DOI] [PubMed] [Google Scholar]
  10. KARASEK M. A., GREENBERG D. M. Studies on the properties of threonine aldolases. J Biol Chem. 1957 Jul;227(1):191–205. [PubMed] [Google Scholar]
  11. Kleckner N. Transposable elements in prokaryotes. Annu Rev Genet. 1981;15:341–404. doi: 10.1146/annurev.ge.15.120181.002013. [DOI] [PubMed] [Google Scholar]
  12. Komatsubara S., Murata K., Kisumi M., Chibata I. Threonine degradation by Serratia marcescens. J Bacteriol. 1978 Aug;135(2):318–323. doi: 10.1128/jb.135.2.318-323.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. MAUZERALL D., GRANICK S. The occurrence and determination of delta-amino-levulinic acid and porphobilinogen in urine. J Biol Chem. 1956 Mar;219(1):435–446. [PubMed] [Google Scholar]
  14. Marcus J. P., Dekker E. E. pH-dependent decarboxylation of 2-amino-3-ketobutyrate, the unstable intermediate in the threonine dehydrogenase-initiated pathway for threonine utilization. Biochem Biophys Res Commun. 1993 Feb 15;190(3):1066–1072. doi: 10.1006/bbrc.1993.1157. [DOI] [PubMed] [Google Scholar]
  15. Mukherjee J. J., Dekker E. E. Purification, properties, and N-terminal amino acid sequence of homogeneous Escherichia coli 2-amino-3-ketobutyrate CoA ligase, a pyridoxal phosphate-dependent enzyme. J Biol Chem. 1987 Oct 25;262(30):14441–14447. [PubMed] [Google Scholar]
  16. Neidhardt F. C., Bloch P. L., Smith D. F. Culture medium for enterobacteria. J Bacteriol. 1974 Sep;119(3):736–747. doi: 10.1128/jb.119.3.736-747.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Newman E. B., Kapoor V., Potter R. Role of L-threonine dehydrogenase in the catabolism of threonine and synthesis of glycine by Escherichia coli. J Bacteriol. 1976 Jun;126(3):1245–1249. doi: 10.1128/jb.126.3.1245-1249.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Potter R., Kapoor V., Newman E. B. Role of threonine dehydrogenase in Escherichia coli threonine degradation. J Bacteriol. 1977 Nov;132(2):385–391. doi: 10.1128/jb.132.2.385-391.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ravnikar P. D., Somerville R. L. Genetic characterization of a highly efficient alternate pathway of serine biosynthesis in Escherichia coli. J Bacteriol. 1987 Jun;169(6):2611–2617. doi: 10.1128/jb.169.6.2611-2617.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Ravnikar P. D., Somerville R. L. Structural and functional analysis of a cloned segment of Escherichia coli DNA that specifies proteins of a C4 pathway of serine biosynthesis. J Bacteriol. 1987 Oct;169(10):4716–4721. doi: 10.1128/jb.169.10.4716-4721.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Tressel T., Thompson R., Zieske L. R., Menendez M. I., Davis L. Interaction between L-threonine dehydrogenase and aminoacetone synthetase and mechanism of aminoacetone production. J Biol Chem. 1986 Dec 15;261(35):16428–16437. [PubMed] [Google Scholar]
  22. Umbarger H. E. Amino acid biosynthesis and its regulation. Annu Rev Biochem. 1978;47:532–606. doi: 10.1146/annurev.bi.47.070178.002533. [DOI] [PubMed] [Google Scholar]
  23. Umbarger H. E. Threonine deaminases. Adv Enzymol Relat Areas Mol Biol. 1973;37:349–395. doi: 10.1002/9780470122822.ch6. [DOI] [PubMed] [Google Scholar]
  24. Wanner B. L., Kodaira R., Neidhardt F. C. Regulation of lac operon expression: reappraisal of the theory of catabolite repression. J Bacteriol. 1978 Dec;136(3):947–954. doi: 10.1128/jb.136.3.947-954.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Weber K., Pringle J. R., Osborn M. Measurement of molecular weights by electrophoresis on SDS-acrylamide gel. Methods Enzymol. 1972;26:3–27. doi: 10.1016/s0076-6879(72)26003-7. [DOI] [PubMed] [Google Scholar]
  26. Willins D. A., Ryan C. W., Platko J. V., Calvo J. M. Characterization of Lrp, and Escherichia coli regulatory protein that mediates a global response to leucine. J Biol Chem. 1991 Jun 15;266(17):10768–10774. [PubMed] [Google Scholar]
  27. Yeung Y. G. L-threonine aldolase is not a genuine enzyme in rat liver. Biochem J. 1986 Jul 1;237(1):187–190. doi: 10.1042/bj2370187. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES