Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1993 Nov;175(21):7056–7065. doi: 10.1128/jb.175.21.7056-7065.1993

Cloning, expression in Escherichia coli, and characterization of cellulolytic enzymes of Azoarcus sp., a root-invading diazotroph.

B Reinhold-Hurek 1, T Hurek 1, M Claeyssens 1, M van Montagu 1
PMCID: PMC206833  PMID: 7693655

Abstract

We screened members of a new genus of grass-associated diazotrophs (Azoarcus spp.) for the presence of cellulolytic enzymes. Out of five Azoarcus strains representing different species, only in the endorhizosphere isolate BH72, which is also capable of invading grass roots, was significant endoglucanase activity, in addition to beta-glucosidase and cellobiohydrolase activity, present. Reducing sugars were readily released from medium-viscosity carboxymethylcellulose (CMC), but neither CMC, cellulose filter strips, Avicel, cellobiose, nor D-glucose served as the sole carbon source for growth of Azoarcus spp. Clones from a plasmid library of strain BH72 expressed all three enzymes in Escherichia coli, apparently not from their own promoter. According to restriction endonuclease mapping and subclone analysis, beta-glucosidase and cellobiohydrolase activities were localized on a single 2.6-kb fragment not physically linked to a 1.45-kb fragment from which endoglucanase (egl) was expressed. Two isoenzymes of endoglucanase probably resulting from proteolytic cleavage had pI values of 6.4 and 6.1 and an apparent molecular mass of approximately 36 kDa. Cellobiohydrolase and beta-glucosidase activity were conferred by one enzyme 41 kDa in size with a pI of 5.4, which we classified as an unspecific exoglycanase (exg) according to substrate utilization and specificity mapping; hydrolysis of various oligomeric substrates differentiated it from endoglucanase, which degraded substituted soluble cellulose derivatives but not microcrystalline cellulose. Both enzymes were not excreted but were associated with the surface of Azoarcus cells. Both activities were only slightly influenced by the presence of CMC or D-glucose in the growth medium but were enhanced by ethanol. egl was located on a large transcript approximately 15 kb in size, which was detectable only in cells grown under microaerobic conditions on N2. Surface-bound exo- and endoglucanases with some unusual regulatory features, detected in this study in a strain which is unable to metabolize cellulose or sugars, might assist Azoarcus sp. strain BH72 in infection of grass roots.

Full text

PDF
7056

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aiba H., Adhya S., de Crombrugghe B. Evidence for two functional gal promoters in intact Escherichia coli cells. J Biol Chem. 1981 Nov 25;256(22):11905–11910. [PubMed] [Google Scholar]
  2. Beguin P., Cornet P., Millet J. Identification of the endoglucanase encoded by the celB gene of Clostridium thermocellum. Biochimie. 1983 Aug-Sep;65(8-9):495–500. doi: 10.1016/s0300-9084(83)80131-x. [DOI] [PubMed] [Google Scholar]
  3. Biely P., Mislovicová D., Toman R. Soluble chromogenic substrates for the assay of endo-1,4-beta-xylanases and endo-1,4-beta-glucanases. Anal Biochem. 1985 Jan;144(1):142–146. doi: 10.1016/0003-2697(85)90095-8. [DOI] [PubMed] [Google Scholar]
  4. Birnboim H. C., Doly J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 1979 Nov 24;7(6):1513–1523. doi: 10.1093/nar/7.6.1513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Claeyssens M., Henrissat B. Specificity mapping of cellulolytic enzymes: classification into families of structurally related proteins confirmed by biochemical analysis. Protein Sci. 1992 Oct;1(10):1293–1297. doi: 10.1002/pro.5560011008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cornelis P., Digneffe C., Willemot K. Cloning and expression of a Bacillus coagulans amylase gene in Escherichia coli. Mol Gen Genet. 1982;186(4):507–511. doi: 10.1007/BF00337957. [DOI] [PubMed] [Google Scholar]
  7. Fierobe H. P., Gaudin C., Belaich A., Loutfi M., Faure E., Bagnara C., Baty D., Belaich J. P. Characterization of endoglucanase A from Clostridium cellulolyticum. J Bacteriol. 1991 Dec;173(24):7956–7962. doi: 10.1128/jb.173.24.7956-7962.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gilkes N. R., Henrissat B., Kilburn D. G., Miller R. C., Jr, Warren R. A. Domains in microbial beta-1, 4-glycanases: sequence conservation, function, and enzyme families. Microbiol Rev. 1991 Jun;55(2):303–315. doi: 10.1128/mr.55.2.303-315.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gilkes N. R., Langsford M. L., Kilburn D. G., Miller R. C., Jr, Warren R. A. Mode of action and substrate specificities of cellulases from cloned bacterial genes. J Biol Chem. 1984 Aug 25;259(16):10455–10459. [PubMed] [Google Scholar]
  10. Grépinet O., Chebrou M. C., Béguin P. Nucleotide sequence and deletion analysis of the xylanase gene (xynZ) of Clostridium thermocellum. J Bacteriol. 1988 Oct;170(10):4582–4588. doi: 10.1128/jb.170.10.4582-4588.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Guiseppi A., Cami B., Aymeric J. L., Ball G., Creuzet N. Homology between endoglucanase Z of Erwinia chrysanthemi and endoglucanases of Bacillus subtilis and alkalophilic Bacillus. Mol Microbiol. 1988 Jan;2(1):159–164. doi: 10.1111/j.1365-2958.1988.tb00017.x. [DOI] [PubMed] [Google Scholar]
  12. Halsall D. M., Gibson A. H. Comparison of Two Cellulomonas Strains and Their Interaction with Azospirillum brasilense in Degradation of Wheat Straw and Associated Nitrogen Fixation. Appl Environ Microbiol. 1986 Apr;51(4):855–861. doi: 10.1128/aem.51.4.855-861.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hanahan D. Studies on transformation of Escherichia coli with plasmids. J Mol Biol. 1983 Jun 5;166(4):557–580. doi: 10.1016/s0022-2836(83)80284-8. [DOI] [PubMed] [Google Scholar]
  14. Henrissat B., Claeyssens M., Tomme P., Lemesle L., Mornon J. P. Cellulase families revealed by hydrophobic cluster analysis. Gene. 1989 Sep 1;81(1):83–95. doi: 10.1016/0378-1119(89)90339-9. [DOI] [PubMed] [Google Scholar]
  15. Huang J. Z., Schell M. A. Role of the two-component leader sequence and mature amino acid sequences in extracellular export of endoglucanase EGL from Pseudomonas solanacearum. J Bacteriol. 1992 Feb;174(4):1314–1323. doi: 10.1128/jb.174.4.1314-1323.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Huang J. Z., Sukordhaman M., Schell M. A. Excretion of the egl gene product of Pseudomonas solanacearum. J Bacteriol. 1989 Jul;171(7):3767–3774. doi: 10.1128/jb.171.7.3767-3774.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  18. Leschine S. B., Holwell K., Canale-Parola E. Nitrogen fixation by anaerobic cellulolytic bacteria. Science. 1988 Nov 25;242(4882):1157–1159. doi: 10.1126/science.242.4882.1157. [DOI] [PubMed] [Google Scholar]
  19. Marais J. P., De Wit J. L., Quicke G. V. A critical examination of the Nelson-Somogyi method for the determination of reducing sugars. Anal Biochem. 1966 Jun;15(3):373–381. doi: 10.1016/0003-2697(66)90098-4. [DOI] [PubMed] [Google Scholar]
  20. Mateos P. F., Jimenez-Zurdo J. I., Chen J., Squartini A. S., Haack S. K., Martinez-Molina E., Hubbell D. H., Dazzo F. B. Cell-associated pectinolytic and cellulolytic enzymes in Rhizobium leguminosarum biovar trifolii. Appl Environ Microbiol. 1992 Jun;58(6):1816–1822. doi: 10.1128/aem.58.6.1816-1822.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Matsushita O., Russell J. B., Wilson D. B. Cloning and sequencing of a Bacteroides ruminicola B(1)4 endoglucanase gene. J Bacteriol. 1990 Jul;172(7):3620–3630. doi: 10.1128/jb.172.7.3620-3630.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. McGavin M., Lam J., Forsberg C. W. Regulation and distribution of Fibrobacter succinogenes subsp. succinogenes S85 endoglucanases. Appl Environ Microbiol. 1990 May;56(5):1235–1244. doi: 10.1128/aem.56.5.1235-1244.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Meinke A., Gilkes N. R., Kilburn D. G., Miller R. C., Jr, Warren R. A. Multiple domains in endoglucanase B (CenB) from Cellulomonas fimi: functions and relatedness to domains in other polypeptides. J Bacteriol. 1991 Nov;173(22):7126–7135. doi: 10.1128/jb.173.22.7126-7135.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Mishra S., Béguin P., Aubert J. P. Transcription of Clostridium thermocellum endoglucanase genes celF and celD. J Bacteriol. 1991 Jan;173(1):80–85. doi: 10.1128/jb.173.1.80-85.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Reinhold B., Hurek T., Fendrik I. Cross-reaction of predominant nitrogen-fixing bacteria with enveloped, round bodies in the root interior of kallar grass. Appl Environ Microbiol. 1987 Apr;53(4):889–891. doi: 10.1128/aem.53.4.889-891.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Reinhold B., Hurek T., Niemann E. G., Fendrik I. Close association of azospirillum and diazotrophic rods with different root zones of kallar grass. Appl Environ Microbiol. 1986 Sep;52(3):520–526. doi: 10.1128/aem.52.3.520-526.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Roberts D. P., Denny T. P., Schell M. A. Cloning of the egl gene of Pseudomonas solanacearum and analysis of its role in phytopathogenicity. J Bacteriol. 1988 Apr;170(4):1445–1451. doi: 10.1128/jb.170.4.1445-1451.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Sharrock K. R. Cellulase assay methods: a review. J Biochem Biophys Methods. 1988 Oct;17(2):81–105. doi: 10.1016/0165-022x(88)90040-1. [DOI] [PubMed] [Google Scholar]
  29. Teather R. M., Wood P. J. Use of Congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl Environ Microbiol. 1982 Apr;43(4):777–780. doi: 10.1128/aem.43.4.777-780.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Théberge M., Lacaze P., Shareck F., Morosoli R., Kluepfel D. Purification and characterization of an endoglucanase from Streptomyces lividans 66 and DNA sequence of the gene. Appl Environ Microbiol. 1992 Mar;58(3):815–820. doi: 10.1128/aem.58.3.815-820.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Tien T. M., Diem H. G., Gaskins M. H., Hubbell D. H. POlygalacturonic acid transeliminase production by Azospirillum species. Can J Microbiol. 1981 Apr;27(4):426–431. doi: 10.1139/m81-065. [DOI] [PubMed] [Google Scholar]
  32. Vercoe P. E., Gregg K. DNA sequence and transcription of an endoglucanase gene from Prevotella (Bacteroides) ruminicola AR20. Mol Gen Genet. 1992 May;233(1-2):284–292. doi: 10.1007/BF00587590. [DOI] [PubMed] [Google Scholar]
  33. Waterbury J. B., Calloway C. B., Turner R. D. A cellulolytic nitrogen-fixing bacterium cultured from the gland of deshayes in shipworms (bivalvia: teredinidae). Science. 1983 Sep 30;221(4618):1401–1403. doi: 10.1126/science.221.4618.1401. [DOI] [PubMed] [Google Scholar]
  34. Wood T. M., Wilson C. A., Stewart C. S. Preparation of the cellulase from the cellulolytic anaerobic rumen bacterium Ruminococcus albus and its release from the bacterial cell wall. Biochem J. 1982 Jul 1;205(1):129–137. doi: 10.1042/bj2050129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES