Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1993 Nov;175(22):7130–7137. doi: 10.1128/jb.175.22.7130-7137.1993

Characterization of the gene encoding an intracellular proteinase inhibitor of Bacillus subtilis and its role in regulation of the major intracellular proteinase.

Y Shiga 1, H Yamagata 1, S Udaka 1
PMCID: PMC206853  PMID: 8226659

Abstract

The gene (ipi) for an intracellular proteinase inhibitor (BsuPI) from Bacillus subtilis was cloned and found to encode a polypeptide consisting of 119 amino acids with no cysteine residues. The deduced amino acid sequence contained the N-terminal amino acid sequence of the inhibitor, which was chemically determined previously, and showed no significant homology to any other proteinase inhibitors. Analysis of the transcription initiation site and mRNA showed that the ipi gene formed an operon with an upstream open reading frame with an unknown function. The transcriptional control of ipi gene expression was demonstrated by Northern (RNA) blot analysis, and the time course of transcriptional enhancement roughly corresponded to the results observed at the protein level. Strains in which the ipi gene was disrupted or in which BsuPI was overexpressed constitutively sporulated normally. Analysis of the time course of production of the intracellular proteinase and proteinase inhibitor in these strains suggested that BsuPI directly regulated the major intracellular proteinase (ISP-1) activity in vivo.

Full text

PDF
7130

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Band L., Henner D. J., Ruppen M. Construction and properties of an intracellular serine protease mutant of Bacillus subtilis. J Bacteriol. 1987 Jan;169(1):444–446. doi: 10.1128/jb.169.1.444-446.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Birnboim H. C. A rapid alkaline extraction method for the isolation of plasmid DNA. Methods Enzymol. 1983;100:243–255. doi: 10.1016/0076-6879(83)00059-2. [DOI] [PubMed] [Google Scholar]
  3. Burbulys D., Trach K. A., Hoch J. A. Initiation of sporulation in B. subtilis is controlled by a multicomponent phosphorelay. Cell. 1991 Feb 8;64(3):545–552. doi: 10.1016/0092-8674(91)90238-t. [DOI] [PubMed] [Google Scholar]
  4. Burnett T. J., Shankweiler G. W., Hageman J. H. Activation of intracellular serine proteinase in Bacillus subtilis cells during sporulation. J Bacteriol. 1986 Jan;165(1):139–145. doi: 10.1128/jb.165.1.139-145.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Casadaban M. J., Chou J., Cohen S. N. In vitro gene fusions that join an enzymatically active beta-galactosidase segment to amino-terminal fragments of exogenous proteins: Escherichia coli plasmid vectors for the detection and cloning of translational initiation signals. J Bacteriol. 1980 Aug;143(2):971–980. doi: 10.1128/jb.143.2.971-980.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chang S., Cohen S. N. High frequency transformation of Bacillus subtilis protoplasts by plasmid DNA. Mol Gen Genet. 1979 Jan 5;168(1):111–115. doi: 10.1007/BF00267940. [DOI] [PubMed] [Google Scholar]
  7. Chavira R., Jr, Burnett T. J., Hageman J. H. Assaying proteinases with azocoll. Anal Biochem. 1984 Feb;136(2):446–450. doi: 10.1016/0003-2697(84)90242-2. [DOI] [PubMed] [Google Scholar]
  8. Chung C. H., Ives H. E., Almeda S., Goldberg A. L. Purification from Escherichia coli of a periplasmic protein that is a potent inhibitor of pancreatic proteases. J Biol Chem. 1983 Sep 25;258(18):11032–11038. [PubMed] [Google Scholar]
  9. Duong F., Lazdunski A., Cami B., Murgier M. Sequence of a cluster of genes controlling synthesis and secretion of alkaline protease in Pseudomonas aeruginosa: relationships to other secretory pathways. Gene. 1992 Nov 2;121(1):47–54. doi: 10.1016/0378-1119(92)90160-q. [DOI] [PubMed] [Google Scholar]
  10. Débarbouillé M., Raibaud O. Expression of the Escherichia coli malPQ operon remains unaffected after drastic alteration of its promoter. J Bacteriol. 1983 Mar;153(3):1221–1227. doi: 10.1128/jb.153.3.1221-1227.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Grossman A. D. Integration of developmental signals and the initiation of sporulation in B. subtilis. Cell. 1991 Apr 5;65(1):5–8. doi: 10.1016/0092-8674(91)90353-z. [DOI] [PubMed] [Google Scholar]
  12. Hanahan D. Studies on transformation of Escherichia coli with plasmids. J Mol Biol. 1983 Jun 5;166(4):557–580. doi: 10.1016/s0022-2836(83)80284-8. [DOI] [PubMed] [Google Scholar]
  13. Horinouchi S., Weisblum B. Nucleotide sequence and functional map of pE194, a plasmid that specifies inducible resistance to macrolide, lincosamide, and streptogramin type B antibodies. J Bacteriol. 1982 May;150(2):804–814. doi: 10.1128/jb.150.2.804-814.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kawamura F., Doi R. H. Construction of a Bacillus subtilis double mutant deficient in extracellular alkaline and neutral proteases. J Bacteriol. 1984 Oct;160(1):442–444. doi: 10.1128/jb.160.1.442-444.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Klier A., Msadek T., Rapoport G. Positive regulation in the gram-positive bacterium: Bacillus subtilis. Annu Rev Microbiol. 1992;46:429–459. doi: 10.1146/annurev.mi.46.100192.002241. [DOI] [PubMed] [Google Scholar]
  16. Koide Y., Nakamura A., Uozumi T., Beppu T. Cloning and sequencing of the major intracellular serine protease gene of Bacillus subtilis. J Bacteriol. 1986 Jul;167(1):110–116. doi: 10.1128/jb.167.1.110-116.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kuroda A., Sekiguchi J. High-level transcription of the major Bacillus subtilis autolysin operon depends on expression of the sigma D gene and is affected by a sin (flaD) mutation. J Bacteriol. 1993 Feb;175(3):795–801. doi: 10.1128/jb.175.3.795-801.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  19. Laskowski M., Jr, Kato I. Protein inhibitors of proteinases. Annu Rev Biochem. 1980;49:593–626. doi: 10.1146/annurev.bi.49.070180.003113. [DOI] [PubMed] [Google Scholar]
  20. Leighton T. J., Doi R. H. The stability of messenger ribonucleic acid during sporulation in Bacillus subtilis. J Biol Chem. 1971 May 25;246(10):3189–3195. [PubMed] [Google Scholar]
  21. Matsudaira P. Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. J Biol Chem. 1987 Jul 25;262(21):10035–10038. [PubMed] [Google Scholar]
  22. McGrath M. E., Hines W. M., Sakanari J. A., Fletterick R. J., Craik C. S. The sequence and reactive site of ecotin. A general inhibitor of pancreatic serine proteases from Escherichia coli. J Biol Chem. 1991 Apr 5;266(10):6620–6625. [PubMed] [Google Scholar]
  23. McKenzie T., Hoshino T., Tanaka T., Sueoka N. The nucleotide sequence of pUB110: some salient features in relation to replication and its regulation. Plasmid. 1986 Mar;15(2):93–103. doi: 10.1016/0147-619x(86)90046-6. [DOI] [PubMed] [Google Scholar]
  24. Millet J. Characterization of a protein inhibitor of intracellular protease from Bacillus subtilis. FEBS Lett. 1977 Feb 15;74(1):59–61. doi: 10.1016/0014-5793(77)80752-7. [DOI] [PubMed] [Google Scholar]
  25. Millet J., Gregoire J. Characterization of an inhibitor of the intracellular protease from Bacillus subtilis. Biochimie. 1979;61(3):385–391. doi: 10.1016/s0300-9084(79)80132-7. [DOI] [PubMed] [Google Scholar]
  26. Nishiya Y., Imanaka T. Cloning and nucleotide sequences of the Bacillus stearothermophilus neutral protease gene and its transcriptional activator gene. J Bacteriol. 1990 Sep;172(9):4861–4869. doi: 10.1128/jb.172.9.4861-4869.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Ruppen M. E., Van Alstine G. L., Band L. Control of intracellular serine protease expression in Bacillus subtilis. J Bacteriol. 1988 Jan;170(1):136–140. doi: 10.1128/jb.170.1.136-140.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. SAITO H., MIURA K. I. PREPARATION OF TRANSFORMING DEOXYRIBONUCLEIC ACID BY PHENOL TREATMENT. Biochim Biophys Acta. 1963 Aug 20;72:619–629. [PubMed] [Google Scholar]
  29. Sadaie Y., Kada T. Formation of competent Bacillus subtilis cells. J Bacteriol. 1983 Feb;153(2):813–821. doi: 10.1128/jb.153.2.813-821.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Satola S. W., Baldus J. M., Moran C. P., Jr Binding of Spo0A stimulates spoIIG promoter activity in Bacillus subtilis. J Bacteriol. 1992 Mar;174(5):1448–1453. doi: 10.1128/jb.174.5.1448-1453.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Sheehan S. M., Switzer R. L. Intracellular serine protease 1 of Bacillus subtilis is formed in vivo as an unprocessed, active protease in stationary cells. J Bacteriol. 1990 Jan;172(1):473–476. doi: 10.1128/jb.172.1.473-476.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Shiga Y., Hasegawa K., Tsuboi A., Yamagata H., Udaka S. Characterization of an extracellular protease inhibitor of Bacillus brevis HPD31 and nucleotide sequence of the corresponding gene. Appl Environ Microbiol. 1992 Feb;58(2):525–531. doi: 10.1128/aem.58.2.525-531.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Sloma A., Rufo G. A., Jr, Theriault K. A., Dwyer M., Wilson S. W., Pero J. Cloning and characterization of the gene for an additional extracellular serine protease of Bacillus subtilis. J Bacteriol. 1991 Nov;173(21):6889–6895. doi: 10.1128/jb.173.21.6889-6895.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Snead R., Day L., Chandra T., Mace M., Jr, Bullock D. W., Woo S. L. Mosaic structure and mRNA precursors of uteroglobin, a hormone-regulated mammalian gene. J Biol Chem. 1981 Nov 25;256(22):11911–11916. [PubMed] [Google Scholar]
  35. Srivastava O. P., Aronson A. I. Isolation and characterization of a unique protease from sporulating cells of Bacillus subtilis. Arch Microbiol. 1981 May;129(3):227–232. doi: 10.1007/BF00425256. [DOI] [PubMed] [Google Scholar]
  36. Studier F. W., Rosenberg A. H., Dunn J. J., Dubendorff J. W. Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol. 1990;185:60–89. doi: 10.1016/0076-6879(90)85008-c. [DOI] [PubMed] [Google Scholar]
  37. Sussman M. D., Setlow P. Cloning, nucleotide sequence, and regulation of the Bacillus subtilis gpr gene, which codes for the protease that initiates degradation of small, acid-soluble proteins during spore germination. J Bacteriol. 1991 Jan;173(1):291–300. doi: 10.1128/jb.173.1.291-300.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Udaka S., Yamagata H. High-level secretion of heterologous proteins by Bacillus brevis. Methods Enzymol. 1993;217:23–33. doi: 10.1016/0076-6879(93)17053-8. [DOI] [PubMed] [Google Scholar]
  39. Wu X. C., Lee W., Tran L., Wong S. L. Engineering a Bacillus subtilis expression-secretion system with a strain deficient in six extracellular proteases. J Bacteriol. 1991 Aug;173(16):4952–4958. doi: 10.1128/jb.173.16.4952-4958.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES