Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1993 Nov;175(22):7216–7221. doi: 10.1128/jb.175.22.7216-7221.1993

Kinetics of appearance and disappearance of classes of bacterial ice nuclei support an aggregation model for ice nucleus assembly.

J A Ruggles 1, M Nemecek-Marshall 1, R Fall 1
PMCID: PMC206863  PMID: 8226668

Abstract

The kinetics of appearance and disappearance of three classes of ice nuclei in Pseudomonas syringae was investigated under conditions where high-level expression of the ice nucleation phenotype was obtained. The appearance of types 1, 2, and 3 ice nuclei, catalyzing nucleation at -2 to -5, -5 to -7, and -7 to -10 degrees C, respectively, was investigated during low-temperature induction in wild-type strains and in a unique, detergent-sensitive mutant that contained no type 3 ice nuclei when grown at 32 degrees C. Nuclei appeared in the following order: type 3, then type 2 and type 1. The disappearance of classes of ice nuclei was monitored during high-temperature treatment of fully induced cells; nuclei disappeared in the order type 1, type 2, and type 3. Although analysis of nucleation events is complicated by masking and unmasking of ice sites in the same cells, these temporal sequences of ice nucleus appearance or disappearance are consistent with an aggregation model for ice nucleus assembly (A. G. Govindarajan and S. E. Lindow, Proc. Natl. Acad. Sci. USA 85:1334-1338, 1988; G. Warren and P. Wolber, Mol. Microbiol. 5:239-243, 1991).

Full text

PDF
7216

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Govindarajan A. G., Lindow S. E. Phospholipid requirement for expression of ice nuclei in Pseudomonas syringae and in vitro. J Biol Chem. 1988 Jul 5;263(19):9333–9338. [PubMed] [Google Scholar]
  2. Govindarajan A. G., Lindow S. E. Size of bacterial ice-nucleation sites measured in situ by radiation inactivation analysis. Proc Natl Acad Sci U S A. 1988 Mar;85(5):1334–1338. doi: 10.1073/pnas.85.5.1334. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Koplow J., Goldfine H. Alterations in the outer membrane of the cell envelope of heptose-deficient mutants of Escherichia coli. J Bacteriol. 1974 Feb;117(2):527–543. doi: 10.1128/jb.117.2.527-543.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Kozloff L. M., Schofield M. A., Lute M. Ice nucleating activity of Pseudomonas syringae and Erwinia herbicola. J Bacteriol. 1983 Jan;153(1):222–231. doi: 10.1128/jb.153.1.222-231.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Kozloff L. M., Turner M. A., Arellano F. Formation of bacterial membrane ice-nucleating lipoglycoprotein complexes. J Bacteriol. 1991 Oct;173(20):6528–6536. doi: 10.1128/jb.173.20.6528-6536.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kozloff L. M., Turner M. A., Arellano F., Lute M. Phosphatidylinositol, a phospholipid of ice-nucleating bacteria. J Bacteriol. 1991 Mar;173(6):2053–2060. doi: 10.1128/jb.173.6.2053-2060.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Lugtenberg B., Van Alphen L. Molecular architecture and functioning of the outer membrane of Escherichia coli and other gram-negative bacteria. Biochim Biophys Acta. 1983 Mar 21;737(1):51–115. doi: 10.1016/0304-4157(83)90014-x. [DOI] [PubMed] [Google Scholar]
  8. Maki L. R., Galyan E. L., Chang-Chien M. M., Caldwell D. R. Ice nucleation induced by pseudomonas syringae. Appl Microbiol. 1974 Sep;28(3):456–459. doi: 10.1128/am.28.3.456-459.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Mizuno H. Prediction of the conformation of ice-nucleation protein by conformational energy calculation. Proteins. 1989;5(1):47–65. doi: 10.1002/prot.340050107. [DOI] [PubMed] [Google Scholar]
  10. Nemecek-Marshall M., LaDuca R., Fall R. High-level expression of ice nuclei in a Pseudomonas syringae strain is induced by nutrient limitation and low temperature. J Bacteriol. 1993 Jul;175(13):4062–4070. doi: 10.1128/jb.175.13.4062-4070.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Parody-Morreale A., Bishop G., Fall R., Gill S. J. A differential scanning calorimeter for ice nucleation distribution studies--application to bacterial nucleators. Anal Biochem. 1986 May 1;154(2):682–690. doi: 10.1016/0003-2697(86)90047-3. [DOI] [PubMed] [Google Scholar]
  12. Phelps P., Giddings T. H., Prochoda M., Fall R. Release of cell-free ice nuclei by Erwinia herbicola. J Bacteriol. 1986 Aug;167(2):496–502. doi: 10.1128/jb.167.2.496-502.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Schoonejans E., Expert D., Toussaint A. Characterization and virulence properties of Erwinia chrysanthemi lipopolysaccharide-defective, phi EC2-resistant mutants. J Bacteriol. 1987 Sep;169(9):4011–4017. doi: 10.1128/jb.169.9.4011-4017.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Turner M. A., Arellano F., Kozloff L. M. Components of ice nucleation structures of bacteria. J Bacteriol. 1991 Oct;173(20):6515–6527. doi: 10.1128/jb.173.20.6515-6527.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Turner M. A., Arellano F., Kozloff L. M. Three separate classes of bacterial ice nucleation structures. J Bacteriol. 1990 May;172(5):2521–2526. doi: 10.1128/jb.172.5.2521-2526.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Warren G., Corotto L. The consensus sequence of ice nucleation proteins from Erwinia herbicola, Pseudomonas fluorescens and Pseudomonas syringae. Gene. 1989 Dec 21;85(1):239–242. doi: 10.1016/0378-1119(89)90488-5. [DOI] [PubMed] [Google Scholar]
  17. Warren G., Corotto L., Wolber P. Conserved repeats in diverged ice nucleation structural genes from two species of Pseudomonas. Nucleic Acids Res. 1986 Oct 24;14(20):8047–8060. doi: 10.1093/nar/14.20.8047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Warren G., Wolber P. Molecular aspects of microbial ice nucleation. Mol Microbiol. 1991 Feb;5(2):239–243. doi: 10.1111/j.1365-2958.1991.tb02104.x. [DOI] [PubMed] [Google Scholar]
  19. Watanabe N. M., Southworth M. W., Warren G. J., Wolber P. K. Rates of assembly and degradation of bacterial ice nuclei. Mol Microbiol. 1990 Nov;4(11):1871–1879. doi: 10.1111/j.1365-2958.1990.tb02036.x. [DOI] [PubMed] [Google Scholar]
  20. Wolber P. K. Bacterial ice nucleation. Adv Microb Physiol. 1993;34:203–237. doi: 10.1016/s0065-2911(08)60030-2. [DOI] [PubMed] [Google Scholar]
  21. Wolber P., Warren G. Bacterial ice-nucleation proteins. Trends Biochem Sci. 1989 May;14(5):179–182. doi: 10.1016/0968-0004(89)90270-3. [DOI] [PubMed] [Google Scholar]
  22. Zhao J. L., Orser C. S. Conserved repetition in the ice nucleation gene inaX from Xanthomonas campestris pv. translucens. Mol Gen Genet. 1990 Aug;223(1):163–166. doi: 10.1007/BF00315811. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES