Abstract
1 Uptake of the non-hydroxylated amines, [14C]-tryptamine and [14C]-benzylamine in rat lung, infused through the pulmonary circulation, was not saturable over the concentration range 2.5-1,000 microM. 2 The kinetic constants for deamination of a variety of hydroxylated and non-hydroxylated monoamines in liver, perfused via the portal circulation, with monoamine oxidase activity in homogenates of liver were similar. 3 In lung, uptake of both [14C]-tryptamine and [14C]-benzylamine was inhibited by the monoamine oxidase inhibitor deprenyl and competition occurred between tryptamine, benzylamine and beta-phenylethylamine for uptake. 4 These results indicate that tryptamine and benzylamine metabolism in lung is not limited by uptake, unlike that of the hydroxylated amines 5-hydroxytryptamine and noradrenaline and that uptake resembles that of beta-phenylethylamine in lung. 5 the selectivity of the lung in handling monoamines is not shown by the liver, suggesting that lung has a specific role in clearing certain biogenic monoamines.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alabaster V. A., Bakhle Y. S. Removal of 5-hydroxytryptamine in the pulmonary circulation of rat isolated lungs. Br J Pharmacol. 1970 Nov;40(3):468–482. [PMC free article] [PubMed] [Google Scholar]
- Anderson M. W., Orton T. C., Pickett R. D., Eling T. E. Accumulation of amines in the isolated perfused rabbit lung. J Pharmacol Exp Ther. 1974 May;189(2):456–466. [PubMed] [Google Scholar]
- Bakhle Y. S., Vane J. R. Pharmacokinetic function of the pulmonary circulation. Physiol Rev. 1974 Oct;54(4):1007–1045. doi: 10.1152/physrev.1974.54.4.1007. [DOI] [PubMed] [Google Scholar]
- Bakhle Y. S., Youdim M. B. The metabolism of 5-hydroxytryptamine and beta-phenylethylamine in perfused rat lung and in vitro. Br J Pharmacol. 1979 Jan;65(1):147–154. doi: 10.1111/j.1476-5381.1979.tb17343.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ben-Harari R. R., Bakhle Y. S. Uptake of beta-phenylethylamine in rat isolated lung. Biochem Pharmacol. 1980 Feb 15;29(4):489–494. doi: 10.1016/0006-2952(80)90367-6. [DOI] [PubMed] [Google Scholar]
- Braestrup C., Andersen H., Randrup A. The monoamine oxidase B inhibitor deprenyl potentiates phenylethylamine behaviour in rats without inhibition of catecholamine metabolite formation. Eur J Pharmacol. 1975 Nov;34(1):181–187. doi: 10.1016/0014-2999(75)90238-1. [DOI] [PubMed] [Google Scholar]
- Dollery C. T., Junod A. F. Concentration of (+/-)-propranolol in isolated, perfused lungs of rat. Br J Pharmacol. 1976 May;57(1):67–71. doi: 10.1111/j.1476-5381.1976.tb07657.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ekstedt B. Substrate specificity of the different forms of monoamine oxidase in rat liver mitochondria. Biochem Pharmacol. 1976 May 15;25(10):1133–1138. doi: 10.1016/0006-2952(76)90359-2. [DOI] [PubMed] [Google Scholar]
- Finberg J. P., Tenne M., Youdim M. B. Tyramine antagonistic properties of AGN 1135, an irreversible inhibitor of monoamine oxidase type B. Br J Pharmacol. 1981 May;73(1):65–74. doi: 10.1111/j.1476-5381.1981.tb16772.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gabay S., Valcourt A. J. Studies of monoamine oxidases. I. Purification and properties of the rabbit liver mitochondrial enzyme. Biochim Biophys Acta. 1968 Jul 9;159(3):440–450. doi: 10.1016/0005-2744(68)90128-9. [DOI] [PubMed] [Google Scholar]
- Hems R., Ross B. D., Berry M. N., Krebs H. A. Gluconeogenesis in the perfused rat liver. Biochem J. 1966 Nov;101(2):284–292. doi: 10.1042/bj1010284. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Houslay M. D., Tipton K. F. A kinetic evaluation of monoamine oxidase activity in rat liver mitochondrial outer membranes. Biochem J. 1974 Jun;139(3):645–652. doi: 10.1042/bj1390645. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Junod A. F. Uptake, metabolism and efflux of 14 C-5-hydroxytryptamine in isolated perfused rat lungs. J Pharmacol Exp Ther. 1972 Nov;183(2):341–355. [PubMed] [Google Scholar]
- Krajl M. A rapid microfluorimetric determination of monoamine oxidase. Biochem Pharmacol. 1965 Nov;14(11):1684–1686. doi: 10.1016/0006-2952(65)90025-0. [DOI] [PubMed] [Google Scholar]
- NAKAJIMA T., KAKIMOTO Y., SANO I. FORMATION OF BETA-PHENYLETHYLAMINE IN MAMMALIAN TISSUE AND ITS EFFECT ON MOTOR ACTIVITY IN THE MOUSE. J Pharmacol Exp Ther. 1964 Mar;143:319–325. [PubMed] [Google Scholar]
- Nicholas T. E., Strum J. M., Angelo L. S., Junod A. F. Site and mechanism of uptake of 3H--norepinephrine by isolated perfused rat lungs. Circ Res. 1974 Nov;35(5):670–680. doi: 10.1161/01.res.35.5.670. [DOI] [PubMed] [Google Scholar]
- Oldendorf W. H. Brain uptake of radiolabeled amino acids, amines, and hexoses after arterial injection. Am J Physiol. 1971 Dec;221(6):1629–1639. doi: 10.1152/ajplegacy.1971.221.6.1629. [DOI] [PubMed] [Google Scholar]
- Simpson L. L. Evidence that deprenyl, A type B monoamine oxidase inhibitor, is an indirectly acting sympathomimetic amine. Biochem Pharmacol. 1978;27(11):1591–1595. doi: 10.1016/0006-2952(78)90490-2. [DOI] [PubMed] [Google Scholar]
- White H. L., Wu J. C. Multiple binding sites of human brain monoamine oxidase as indicated by substrate competition. J Neurochem. 1975 Jul;25(1):21–26. doi: 10.1111/j.1471-4159.1975.tb07688.x. [DOI] [PubMed] [Google Scholar]
- Woods H. F., Eggleston L. V., Krebs H. A. The cause of hepatic accumulation of fructose 1-phosphate on fructose loading. Biochem J. 1970 Sep;119(3):501–510. doi: 10.1042/bj1190501. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Youdim M. B., Woods H. F. The influence of tissue environment on the rates of metabolic processes and the properties of enzymes. Biochem Pharmacol. 1975 Feb 1;24(3):317–323. doi: 10.1016/0006-2952(75)90212-9. [DOI] [PubMed] [Google Scholar]
