Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1993 Nov;175(22):7356–7362. doi: 10.1128/jb.175.22.7356-7362.1993

A gene encoding arginyl-tRNA synthetase is located in the upstream region of the lysA gene in Brevibacterium lactofermentum: regulation of argS-lysA cluster expression by arginine.

J A Oguiza 1, M Malumbres 1, G Eriani 1, A Pisabarro 1, L M Mateos 1, F Martin 1, J F Martín 1
PMCID: PMC206880  PMID: 8226683

Abstract

The Brevibacterium lactofermentum argS gene, which encodes an arginyl-tRNA synthetase, was identified in the upstream region of the lysA gene. The cloned gene was sequenced; it encodes a 550-amino-acid protein with an M(r) of 59,797. The deduced amino acid sequence showed 28% identical and 49% similar residues when compared with the sequence of the Escherichia coli arginyl-tRNA synthetase. The B. lactofermentum enzyme showed the highly conserved motifs of class I aminoacyl-tRNA synthetases. Expression of the argS gene in B. lactofermentum and E. coli resulted in an increase in aminoacyl-tRNA synthetase activity, correlated with the presence in sodium dodecyl sulfate-polyacrylamide gels of a clear protein band that corresponds to this enzyme. One single transcript of about 3,000 nucleotides and corresponding to the B. lactofermentum argS-lysA operon was identified. The transcription of these genes is repressed by lysine and induced by arginine, showing an interesting pattern of biosynthetic interlock between the pathways of both amino acids in corynebacteria.

Full text

PDF
7356

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersen A. B., Hansen E. B. Cloning of the lysA gene from Mycobacterium tuberculosis. Gene. 1993 Feb 14;124(1):105–109. doi: 10.1016/0378-1119(93)90768-x. [DOI] [PubMed] [Google Scholar]
  2. Breton R., Watson D., Yaguchi M., Lapointe J. Glutamyl-tRNA synthetases of Bacillus subtilis 168T and of Bacillus stearothermophilus. Cloning and sequencing of the gltX genes and comparison with other aminoacyl-tRNA synthetases. J Biol Chem. 1990 Oct 25;265(30):18248–18255. [PubMed] [Google Scholar]
  3. Chan V. L., Bingham H. L. Lysyl-tRNA synthetase gene of Campylobacter jejuni. J Bacteriol. 1992 Feb;174(3):695–701. doi: 10.1128/jb.174.3.695-701.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chung C. T., Niemela S. L., Miller R. H. One-step preparation of competent Escherichia coli: transformation and storage of bacterial cells in the same solution. Proc Natl Acad Sci U S A. 1989 Apr;86(7):2172–2175. doi: 10.1073/pnas.86.7.2172. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Courtney M., Buchwalder A., Tessier L. H., Jaye M., Benavente A., Balland A., Kohli V., Lathe R., Tolstoshev P., Lecocq J. P. High-level production of biologically active human alpha 1-antitrypsin in Escherichia coli. Proc Natl Acad Sci U S A. 1984 Feb;81(3):669–673. doi: 10.1073/pnas.81.3.669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cremer J., Treptow C., Eggeling L., Sahm H. Regulation of enzymes of lysine biosynthesis in Corynebacterium glutamicum. J Gen Microbiol. 1988 Dec;134(12):3221–3229. doi: 10.1099/00221287-134-12-3221. [DOI] [PubMed] [Google Scholar]
  7. Ehresmann B., Imbault P., Weil J. H. Spectrophotometric determination of protein concentration in cell extracts containing tRNA's and rRNA's. Anal Biochem. 1973 Aug;54(2):454–463. doi: 10.1016/0003-2697(73)90374-6. [DOI] [PubMed] [Google Scholar]
  8. Eriani G., Delarue M., Poch O., Gangloff J., Moras D. Partition of tRNA synthetases into two classes based on mutually exclusive sets of sequence motifs. Nature. 1990 Sep 13;347(6289):203–206. doi: 10.1038/347203a0. [DOI] [PubMed] [Google Scholar]
  9. Eriani G., Dirheimer G., Gangloff J. Isolation and characterization of the gene coding for Escherichia coli arginyl-tRNA synthetase. Nucleic Acids Res. 1989 Jul 25;17(14):5725–5736. doi: 10.1093/nar/17.14.5725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Eriani G., Dirheimer G., Gangloff J. Structure-function relationship of arginyl-tRNA synthetase from Escherichia coli: isolation and characterization of the argS mutation MA5002. Nucleic Acids Res. 1990 Mar 25;18(6):1475–1479. doi: 10.1093/nar/18.6.1475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Glisin V., Crkvenjakov R., Byus C. Ribonucleic acid isolated by cesium chloride centrifugation. Biochemistry. 1974 Jun 4;13(12):2633–2637. doi: 10.1021/bi00709a025. [DOI] [PubMed] [Google Scholar]
  12. Hohmann S., Thevelein J. M. The cell division cycle gene CDC60 encodes cytosolic leucyl-tRNA synthetase in Saccharomyces cerevisiae. Gene. 1992 Oct 12;120(1):43–49. doi: 10.1016/0378-1119(92)90007-c. [DOI] [PubMed] [Google Scholar]
  13. Hountondji C., Lederer F., Dessen P., Blanquet S. Escherichia coli tyrosyl- and methionyl-tRNA synthetases display sequence similarity at the binding site for the 3'-end of tRNA. Biochemistry. 1986 Jan 14;25(1):16–21. doi: 10.1021/bi00349a003. [DOI] [PubMed] [Google Scholar]
  14. Jann A., Cavard D., Martin C., Cami B., Patte J. C. A lipopeptide-encoding sequence upstream from the lysA gene of Pseudomonas aeruginosa. Mol Microbiol. 1990 Apr;4(4):677–682. doi: 10.1111/j.1365-2958.1990.tb00637.x. [DOI] [PubMed] [Google Scholar]
  15. Jensen R. A. Metabolic interlock. Regulatory interactions exerted between biochemical pathways. J Biol Chem. 1969 Jun 10;244(11):2816–2823. [PubMed] [Google Scholar]
  16. Leatherbarrow R. J., Fersht A. R., Winter G. Transition-state stabilization in the mechanism of tyrosyl-tRNA synthetase revealed by protein engineering. Proc Natl Acad Sci U S A. 1985 Dec;82(23):7840–7844. doi: 10.1073/pnas.82.23.7840. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Marcel T., Archer J. A., Mengin-Lecreulx D., Sinskey A. J. Nucleotide sequence and organization of the upstream region of the Corynebacterium glutamicum lysA gene. Mol Microbiol. 1990 Nov;4(11):1819–1830. doi: 10.1111/j.1365-2958.1990.tb02030.x. [DOI] [PubMed] [Google Scholar]
  18. Mead D. A., Kemper B. Chimeric single-stranded DNA phage-plasmid cloning vectors. Biotechnology. 1988;10:85–102. doi: 10.1016/b978-0-409-90042-2.50010-6. [DOI] [PubMed] [Google Scholar]
  19. Mehler A. H., Mitra S. K. The activation of arginyl transfer ribonucleic acid synthetase by transfer ribonucleic acid. J Biol Chem. 1967 Dec 10;242(23):5495–5499. [PubMed] [Google Scholar]
  20. Márquez G., Sousa J. M., Sánchez F. Cloning and expression in Escherichia coli of genes involved in the lysine pathway of Brevibacterium lactofermentum. J Bacteriol. 1985 Oct;164(1):379–383. doi: 10.1128/jb.164.1.379-383.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Neihardt F. C., Parker J., McKeever W. G. Function and regulation of aminoacyl-tRNA synthetases in prokaryotic and eukaryotic cells. Annu Rev Microbiol. 1975;29:215–250. doi: 10.1146/annurev.mi.29.100175.001243. [DOI] [PubMed] [Google Scholar]
  22. Pisabarro A., Malumbres M., Mateos L. M., Oguiza J. A., Martín J. F. A cluster of three genes (dapA, orf2, and dapB) of Brevibacterium lactofermentum encodes dihydrodipicolinate synthase, dihydrodipicolinate reductase, and a third polypeptide of unknown function. J Bacteriol. 1993 May;175(9):2743–2749. doi: 10.1128/jb.175.9.2743-2749.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Santamaria R. I., Gil J. A., Martin J. F. High-frequency transformation of Brevibacterium lactofermentum protoplasts by plasmid DNA. J Bacteriol. 1985 Apr;162(1):463–467. doi: 10.1128/jb.162.1.463-467.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Schwarzer A., Pühler A. Manipulation of Corynebacterium glutamicum by gene disruption and replacement. Biotechnology (N Y) 1991 Jan;9(1):84–87. doi: 10.1038/nbt0191-84. [DOI] [PubMed] [Google Scholar]
  25. Schäfer A., Kalinowski J., Simon R., Seep-Feldhaus A. H., Pühler A. High-frequency conjugal plasmid transfer from gram-negative Escherichia coli to various gram-positive coryneform bacteria. J Bacteriol. 1990 Mar;172(3):1663–1666. doi: 10.1128/jb.172.3.1663-1666.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Sharp P. M., Mitchell K. J. Corynebacterium glutamicum arginyl-tRNA synthetase. Mol Microbiol. 1993 Apr;8(1):200–200. doi: 10.1111/j.1365-2958.1993.tb01217.x. [DOI] [PubMed] [Google Scholar]
  27. Stragier P., Danos O., Patte J. C. Regulation of diaminopimelate decarboxylase synthesis in Escherichia coli. II. Nucleotide sequence of the lysA gene and its regulatory region. J Mol Biol. 1983 Aug 5;168(2):321–331. doi: 10.1016/s0022-2836(83)80021-7. [DOI] [PubMed] [Google Scholar]
  28. Stragier P., Patte J. C. Regulation of diaminopimelate decarboxylase synthesis in Escherichia coli. III. Nucleotide sequence and regulation of the lysR gene. J Mol Biol. 1983 Aug 5;168(2):333–350. doi: 10.1016/s0022-2836(83)80022-9. [DOI] [PubMed] [Google Scholar]
  29. Stragier P., Richaud F., Borne F., Patte J. C. Regulation of diaminopimelate decarboxylase synthesis in Escherichia coli. I. Identification of a lysR gene encoding an activator of the lysA gene. J Mol Biol. 1983 Aug 5;168(2):307–320. doi: 10.1016/s0022-2836(83)80020-5. [DOI] [PubMed] [Google Scholar]
  30. Webster T., Tsai H., Kula M., Mackie G. A., Schimmel P. Specific sequence homology and three-dimensional structure of an aminoacyl transfer RNA synthetase. Science. 1984 Dec 14;226(4680):1315–1317. doi: 10.1126/science.6390679. [DOI] [PubMed] [Google Scholar]
  31. Woese C. R. Bacterial evolution. Microbiol Rev. 1987 Jun;51(2):221–271. doi: 10.1128/mr.51.2.221-271.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Yamamoto J., Shimizu M., Yamane K. Molecular cloning and analysis of nucleotide sequence of the Bacillus subtilis lysA gene region using B. subtilis phage vectors and a multi-copy plasmid, pUB110. Agric Biol Chem. 1991 Jun;55(6):1615–1626. [PubMed] [Google Scholar]
  33. Yeh P., Sicard A. M., Sinskey A. J. Nucleotide sequence of the lysA gene of Corynebacterium glutamicum and possible mechanisms for modulation of its expression. Mol Gen Genet. 1988 Apr;212(1):112–119. doi: 10.1007/BF00322452. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES