Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1993 Nov;175(22):7413–7420. doi: 10.1128/jb.175.22.7413-7420.1993

Hemin uptake in Porphyromonas gingivalis: Omp26 is a hemin-binding surface protein.

T E Bramanti 1, S C Holt 1
PMCID: PMC206886  PMID: 8226688

Abstract

A 26-kDa outer membrane protein (Omp26) has been proposed to play a role in hemin acquisition by Porphyromonas gingivalis (T. E. Bramanti and S. C. Holt, J. Bacteriol. 174:5827-5839, 1992). We studied [55Fe]hemin uptake in P. gingivalis grown under conditions of hemin starvation (Omp26 expressed on the outer membrane surface) and hemin excess (Omp26 not expressed on surface). [55Fe]hemin uptake occurred rapidly in hemin-starved cells which incorporated up to 70% of total [55Fe]hemin within 3 min. P. gingivalis grown under hemin-starved conditions or treated with the iron chelator 2,2'-bipyridyl to induce an iron stress took up six times more [55Fe]hemin than hemin-excess-grown cells. Polyclonal monospecific anti-Omp26 antibody added to hemin-starved cells inhibited [55Fe]hemin uptake by more than 50%, whereas preimmune serum had no effect. [55Fe]hemin uptake in hemin-starved P. gingivalis was inhibited (36 to 67%) in the presence of equimolar amounts of unlabeled hemin, protoporphyrin IX, zinz protoporphyrin, and Congo red dye but was not inhibited in the presence of non-hemin-containing iron sources. Heat shock treatment (45 degrees C) of hemin-excess-grown P. gingivalis (which cases translocation of Omp26 to the surface) increased [55Fe]hemin uptake by threefold after 3 min in comparison with cells grown at 37 degrees C. However, no [55Fe] hemin uptake beyond 3 min was observed in either hemin-excess-grown or hemin-starved cells exposed to heat shock. In experiments using heterobifunctional cross-linker analysis, hemin and selected porphyrins were cross-linked to Omp26 in hemin-starved P. gingivalis, but no cross-linking was seen with hemin-excess-grown cells. However, cross-linking of hemin to Omp26 was observed after heat shock treatment of hemin-excess-grown cells. Finally, anti-Omp26 antibody inhibited cross-linked of hemin to Omp26. These findings indicate that hemin binding and transport into P.gingivalis cell mediated by Omp26.

Full text

PDF
7413

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benedetti H., Lazdunski C., Lloubès R. Protein import into Escherichia coli: colicins A and E1 interact with a component of their translocation system. EMBO J. 1991 Aug;10(8):1989–1995. doi: 10.1002/j.1460-2075.1991.tb07728.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bourdineaud J. P., Fierobe H. P., Lazdunski C., Pagès J. M. Involvement of OmpF during reception and translocation steps of colicin N entry. Mol Microbiol. 1990 Oct;4(10):1737–1743. doi: 10.1111/j.1365-2958.1990.tb00551.x. [DOI] [PubMed] [Google Scholar]
  3. Bramanti T. E., Holt S. C. Effect of porphyrins and host iron transport proteins on outer membrane protein expression in Porphyromonas (Bacteroides) gingivalis: identification of a novel 26 kDa hemin-repressible surface protein. Microb Pathog. 1992 Jul;13(1):61–73. doi: 10.1016/0882-4010(92)90032-j. [DOI] [PubMed] [Google Scholar]
  4. Bramanti T. E., Holt S. C. Iron-regulated outer membrane proteins in the periodontopathic bacterium, Bacteroides gingivalis. Biochem Biophys Res Commun. 1990 Feb 14;166(3):1146–1154. doi: 10.1016/0006-291x(90)90986-w. [DOI] [PubMed] [Google Scholar]
  5. Bramanti T. E., Holt S. C. Localization of a Porphyromonas gingivalis 26-kilodalton heat-modifiable, hemin-regulated surface protein which translocates across the outer membrane. J Bacteriol. 1992 Sep;174(18):5827–5839. doi: 10.1128/jb.174.18.5827-5839.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bramanti T. E., Holt S. C. Roles of porphyrins and host iron transport proteins in regulation of growth of Porphyromonas gingivalis W50. J Bacteriol. 1991 Nov;173(22):7330–7339. doi: 10.1128/jb.173.22.7330-7339.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Braun V., Günter K., Hantke K. Transport of iron across the outer membrane. Biol Met. 1991;4(1):14–22. doi: 10.1007/BF01135552. [DOI] [PubMed] [Google Scholar]
  8. Carman R. J., Ramakrishnan M. D., Harper F. H. Hemin levels in culture medium of Porphyromonas (Bacteroides) gingivalis regulate both hemin binding and trypsinlike protease production. Infect Immun. 1990 Dec;58(12):4016–4019. doi: 10.1128/iai.58.12.4016-4019.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chu L., Bramanti T. E., Ebersole J. L., Holt S. C. Hemolytic activity in the periodontopathogen Porphyromonas gingivalis: kinetics of enzyme release and localization. Infect Immun. 1991 Jun;59(6):1932–1940. doi: 10.1128/iai.59.6.1932-1940.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Grenier D. Hemin-binding property of Porphyromonas gingivalis outer membranes. FEMS Microbiol Lett. 1991 Jan 1;61(1):45–49. doi: 10.1016/0378-1097(91)90011-x. [DOI] [PubMed] [Google Scholar]
  11. Hanson M. S., Hansen E. J. Molecular cloning, partial purification, and characterization of a haemin-binding lipoprotein from Haemophilus influenzae type b. Mol Microbiol. 1991 Feb;5(2):267–278. doi: 10.1111/j.1365-2958.1991.tb02107.x. [DOI] [PubMed] [Google Scholar]
  12. Holland I. B., Blight M. A., Kenny B. The mechanism of secretion of hemolysin and other polypeptides from gram-negative bacteria. J Bioenerg Biomembr. 1990 Jun;22(3):473–491. doi: 10.1007/BF00763178. [DOI] [PubMed] [Google Scholar]
  13. Kay W. W., Phipps B. M., Ishiguro E. E., Trust T. J. Porphyrin binding by the surface array virulence protein of Aeromonas salmonicida. J Bacteriol. 1985 Dec;164(3):1332–1336. doi: 10.1128/jb.164.3.1332-1336.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kennell W., Holt S. C. Comparative studies of the outer membranes of Bacteroides gingivalis, strains ATCC 33277, W50, W83, 381. Oral Microbiol Immunol. 1990 Jun;5(3):121–130. doi: 10.1111/j.1399-302x.1990.tb00409.x. [DOI] [PubMed] [Google Scholar]
  15. Lee B. C. Isolation of an outer membrane hemin-binding protein of Haemophilus influenzae type b. Infect Immun. 1992 Mar;60(3):810–816. doi: 10.1128/iai.60.3.810-816.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Martínez J. L., Delgado-Iribarren A., Baquero F. Mechanisms of iron acquisition and bacterial virulence. FEMS Microbiol Rev. 1990 Mar;6(1):45–56. doi: 10.1111/j.1574-6968.1990.tb04085.x. [DOI] [PubMed] [Google Scholar]
  17. Neilands J. B. Microbial envelope proteins related to iron. Annu Rev Microbiol. 1982;36:285–309. doi: 10.1146/annurev.mi.36.100182.001441. [DOI] [PubMed] [Google Scholar]
  18. Neville D. M., Jr, Hudson T. H. Transmembrane transport of diphtheria toxin, related toxins, and colicins. Annu Rev Biochem. 1986;55:195–224. doi: 10.1146/annurev.bi.55.070186.001211. [DOI] [PubMed] [Google Scholar]
  19. Nikaido H., Reid J. Biogenesis of prokaryotic pores. Experientia. 1990 Feb 15;46(2):174–180. [PubMed] [Google Scholar]
  20. Payne S. M. Iron and virulence in the family Enterobacteriaceae. Crit Rev Microbiol. 1988;16(2):81–111. doi: 10.3109/10408418809104468. [DOI] [PubMed] [Google Scholar]
  21. Pendrak M. L., Perry R. D. Characterization of a hemin-storage locus of Yersinia pestis. Biol Met. 1991;4(1):41–47. doi: 10.1007/BF01135556. [DOI] [PubMed] [Google Scholar]
  22. Perry R. D., Lucier T. S., Sikkema D. J., Brubaker R. R. Storage reservoirs of hemin and inorganic iron in Yersinia pestis. Infect Immun. 1993 Jan;61(1):32–39. doi: 10.1128/iai.61.1.32-39.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Reid J., Fung H., Gehring K., Klebba P. E., Nikaido H. Targeting of porin to the outer membrane of Escherichia coli. Rate of trimer assembly and identification of a dimer intermediate. J Biol Chem. 1988 Jun 5;263(16):7753–7759. [PubMed] [Google Scholar]
  24. Smalley J. W., Birss A. J., McKee A. S., Marsh P. D. Haemin-restriction influences haemin-binding, haemagglutination and protease activity of cells and extracellular membrane vesicles of Porphyromonas gingivalis W50. FEMS Microbiol Lett. 1991 Dec 15;69(1):63–67. doi: 10.1016/0378-1097(91)90647-s. [DOI] [PubMed] [Google Scholar]
  25. Stojiljkovic I., Hantke K. Hemin uptake system of Yersinia enterocolitica: similarities with other TonB-dependent systems in gram-negative bacteria. EMBO J. 1992 Dec;11(12):4359–4367. doi: 10.1002/j.1460-2075.1992.tb05535.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Stugard C. E., Daskaleros P. A., Payne S. M. A 101-kilodalton heme-binding protein associated with congo red binding and virulence of Shigella flexneri and enteroinvasive Escherichia coli strains. Infect Immun. 1989 Nov;57(11):3534–3539. doi: 10.1128/iai.57.11.3534-3539.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Wang R. C., Seror S. J., Blight M., Pratt J. M., Broome-Smith J. K., Holland I. B. Analysis of the membrane organization of an Escherichia coli protein translocator, HlyB, a member of a large family of prokaryote and eukaryote surface transport proteins. J Mol Biol. 1991 Feb 5;217(3):441–454. doi: 10.1016/0022-2836(91)90748-u. [DOI] [PubMed] [Google Scholar]
  28. Webster R. E. The tol gene products and the import of macromolecules into Escherichia coli. Mol Microbiol. 1991 May;5(5):1005–1011. doi: 10.1111/j.1365-2958.1991.tb01873.x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES