Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1993 Dec;175(23):7581–7593. doi: 10.1128/jb.175.23.7581-7593.1993

Regions of the Bacillus subtilis ilv-leu operon involved in regulation by leucine.

J A Grandoni 1, S B Fulmer 1, V Brizzio 1, S A Zahler 1, J M Calvo 1
PMCID: PMC206914  PMID: 8244927

Abstract

The ilv-leu operon of Bacillus subtilis is regulated in part by transcription attenuation. The cis-acting elements required for regulation by leucine lie within a 683-bp fragment of DNA from the region upstream of ilvB, the first gene of the operon. This fragment contains the ilv-leu promoter and 482 bp of the ilv-leu leader region. Spontaneous mutations that lead to increased expression of the operon were shown to lie in an imperfect inverted repeat encoding the terminator stem within the leader region. Mutations within the inverted repeat of the terminator destroyed most of the leucine-mediated repression. The remaining leucine-mediated repression probably resulted from a decrease in transcription initiation. A systematic analysis of other deletions within the ilv-leu leader region identified a 40-bp region required for the derepression that occurred during leucine limitation. This region lies within a potential RNA stem-and-loop structure that is probably required for leucine-dependent control. Deletion analysis also suggested that alternate secondary structures proximal to the terminator are involved in allowing transcription to proceed beyond the terminator. Additional experiments suggested that attenuation of the ilv-leu operon is not dependent on coupling translation to transcription of the leader region. Our data support a model proposed by Grundy and Henkin (F. J. Grundy and T. M. Henkin, Cell 74:475-482, 1993) in which uncharged tRNA acts as a positive regulatory factor to increase gene expression during amino acid limitation.

Full text

PDF
7581

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Babitzke P., Yanofsky C. Reconstitution of Bacillus subtilis trp attenuation in vitro with TRAP, the trp RNA-binding attenuation protein. Proc Natl Acad Sci U S A. 1993 Jan 1;90(1):133–137. doi: 10.1073/pnas.90.1.133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Carter P. W., Weiss D. L., Weith H. L., Calvo J. M. Mutations that convert the four leucine codons of the Salmonella typhimurium leu leader to four threonine codons. J Bacteriol. 1985 Jun;162(3):943–949. doi: 10.1128/jb.162.3.943-949.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Casanova J. L., Pannetier C., Jaulin C., Kourilsky P. Optimal conditions for directly sequencing double-stranded PCR products with sequenase. Nucleic Acids Res. 1990 Jul 11;18(13):4028–4028. doi: 10.1093/nar/18.13.4028. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Grandoni J. A., Zahler S. A., Calvo J. M. Transcriptional regulation of the ilv-leu operon of Bacillus subtilis. J Bacteriol. 1992 May;174(10):3212–3219. doi: 10.1128/jb.174.10.3212-3219.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Grundy F. J., Henkin T. M. tRNA as a positive regulator of transcription antitermination in B. subtilis. Cell. 1993 Aug 13;74(3):475–482. doi: 10.1016/0092-8674(93)80049-k. [DOI] [PubMed] [Google Scholar]
  6. Henkin T. M., Glass B. L., Grundy F. J. Analysis of the Bacillus subtilis tyrS gene: conservation of a regulatory sequence in multiple tRNA synthetase genes. J Bacteriol. 1992 Feb;174(4):1299–1306. doi: 10.1128/jb.174.4.1299-1306.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Houman F., Diaz-Torres M. R., Wright A. Transcriptional antitermination in the bgl operon of E. coli is modulated by a specific RNA binding protein. Cell. 1990 Sep 21;62(6):1153–1163. doi: 10.1016/0092-8674(90)90392-r. [DOI] [PubMed] [Google Scholar]
  8. Keller E. B., Calvo J. M. Alternative secondary structures of leader RNAs and the regulation of the trp, phe, his, thr, and leu operons. Proc Natl Acad Sci U S A. 1979 Dec;76(12):6186–6190. doi: 10.1073/pnas.76.12.6186. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kunkel T. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc Natl Acad Sci U S A. 1985 Jan;82(2):488–492. doi: 10.1073/pnas.82.2.488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Moran C. P., Jr, Lang N., LeGrice S. F., Lee G., Stephens M., Sonenshein A. L., Pero J., Losick R. Nucleotide sequences that signal the initiation of transcription and translation in Bacillus subtilis. Mol Gen Genet. 1982;186(3):339–346. doi: 10.1007/BF00729452. [DOI] [PubMed] [Google Scholar]
  11. Otridge J., Gollnick P. MtrB from Bacillus subtilis binds specifically to trp leader RNA in a tryptophan-dependent manner. Proc Natl Acad Sci U S A. 1993 Jan 1;90(1):128–132. doi: 10.1073/pnas.90.1.128. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Perkins J. B., Youngman P. J. Construction and properties of Tn917-lac, a transposon derivative that mediates transcriptional gene fusions in Bacillus subtilis. Proc Natl Acad Sci U S A. 1986 Jan;83(1):140–144. doi: 10.1073/pnas.83.1.140. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Platko J. V., Willins D. A., Calvo J. M. The ilvIH operon of Escherichia coli is positively regulated. J Bacteriol. 1990 Aug;172(8):4563–4570. doi: 10.1128/jb.172.8.4563-4570.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Roesser J. R., Yanofsky C. The RNA antiterminator causes transcription pausing in the leader region of the tryptophan operon. J Biol Chem. 1990 Apr 15;265(11):6055–6060. [PubMed] [Google Scholar]
  15. Shimotsu H., Kuroda M. I., Yanofsky C., Henner D. J. Novel form of transcription attenuation regulates expression the Bacillus subtilis tryptophan operon. J Bacteriol. 1986 May;166(2):461–471. doi: 10.1128/jb.166.2.461-471.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Stroynowski I., Yanofsky C. Transcript secondary structures regulate transcription termination at the attenuator of S. marcescens tryptophan operon. Nature. 1982 Jul 1;298(5869):34–38. doi: 10.1038/298034a0. [DOI] [PubMed] [Google Scholar]
  17. Vander Horn P. B., Zahler S. A. Cloning and nucleotide sequence of the leucyl-tRNA synthetase gene of Bacillus subtilis. J Bacteriol. 1992 Jun;174(12):3928–3935. doi: 10.1128/jb.174.12.3928-3935.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Weinstock O., Sella C., Chipman D. M., Barak Z. Properties of subcloned subunits of bacterial acetohydroxy acid synthases. J Bacteriol. 1992 Sep;174(17):5560–5566. doi: 10.1128/jb.174.17.5560-5566.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES