Abstract
1 The effect of thiopentone, methohexitone, urethane and ketamine on the uptake and release of gamma-aminobutyric acid (GABA) and D-aspartate by rat thalamic slices has been investigated. 2 A high, supra-anaesthetic concentration of methohexitone increased the uptake of both D-aspartate and GABA. 3 None of the anaesthetics used had any detectable effect upon the spontaneous release of either amino acid. 4 Urethane and ketamine had no effect upon the K+-stimulated release of either amino acid. 5 Methohexitone and thiopentone produced a biphasic dose-response on the K+-stimulated release of both amino acids; low concentrations enhanced release, high concentrations depressed release. 6 Bicuculline hydrochloride and picrotoxin both significantly reduced the barbiturate-induced enhancement of K+-stimulated amino acid release, but did not significantly alter the depression of K+-stimulated release at higher barbiturate concentrations. 7 Baclofen, either alone (1 microM to 1 mM), or tested against the barbiturates, had no detectable effect.
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ANDERSEN P., CURTIS D. R. THE PHARMACOLOGY OF THE SYNAPTIC AND ACETYLCHOLINE-INDUCED EXCITATION OF VENTROBASAL THALAMIC NEURONES. Acta Physiol Scand. 1964 May-Jun;61:100–120. doi: 10.1111/j.1748-1716.1964.tb02946.x. [DOI] [PubMed] [Google Scholar]
- Angel A. Processing of sensory information. Prog Neurobiol. 1977;9(1-2):1–122. doi: 10.1016/0301-0082(77)90018-1. [DOI] [PubMed] [Google Scholar]
- Angel A., Unwin J. The effect of urethane on transmission along the dorsal column sensory pathway in the rat. J Physiol. 1970 May;208(1):32P–33P. [PubMed] [Google Scholar]
- Balcar V. J., Johnston G. A. The structural specificity of the high affinity uptake of L-glutamate and L-aspartate by rat brain slices. J Neurochem. 1972 Nov;19(11):2657–2666. doi: 10.1111/j.1471-4159.1972.tb01325.x. [DOI] [PubMed] [Google Scholar]
- Barker J. L. CNS depressants: effects on post-synaptic pharmacology. Brain Res. 1975 Jul 4;92(1):35–55. doi: 10.1016/0006-8993(75)90526-0. [DOI] [PubMed] [Google Scholar]
- Barker J. L., Gainer H. Pentobarbital: selective depression of excitatory postsynaptic potentials. Science. 1973 Nov 16;182(4113):720–722. doi: 10.1126/science.182.4113.720. [DOI] [PubMed] [Google Scholar]
- Bauer B. Effect of pentobarbitone on the spontaneous efflux of gamma-amino acids from rabbit retina. Brain Res. 1979 Mar 16;163(2):307–317. doi: 10.1016/0006-8993(79)90358-5. [DOI] [PubMed] [Google Scholar]
- Bowery N. G., Hill D. R., Hudson A. L., Doble A., Middlemiss D. N., Shaw J., Turnbull M. (-)Baclofen decreases neurotransmitter release in the mammalian CNS by an action at a novel GABA receptor. Nature. 1980 Jan 3;283(5742):92–94. doi: 10.1038/283092a0. [DOI] [PubMed] [Google Scholar]
- Cheng S. C., Naruse H., Brunner E. A. Effects of sodium thiopental on the tricarboxylic acid cycle metabolism in mouse brain: CO2 fixation and metabolic compartmentation. J Neurochem. 1978 Jun;30(6):1591–1593. doi: 10.1111/j.1471-4159.1978.tb10499.x. [DOI] [PubMed] [Google Scholar]
- Collins G. G. Evidence of a neurotransmitter role for aspartate and gamma-aminobutyric acid in the rat olfactory cortex. J Physiol. 1979 Jun;291:51–60. doi: 10.1113/jphysiol.1979.sp012799. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Collins G. G. Release of endogenous amino acid neurotransmitter candidates from rat olfactory cortex slices: possible regulatory mechanisms and the effects of pentobarbitone. Brain Res. 1980 May 26;190(2):517–528. doi: 10.1016/0006-8993(80)90293-0. [DOI] [PubMed] [Google Scholar]
- Cremer J. E., Lucas H. M. Sodium pentobarbitone and metabolic compartments in rat brain. Brain Res. 1971 Dec 24;35(2):619–621. doi: 10.1016/0006-8993(71)90514-2. [DOI] [PubMed] [Google Scholar]
- Curtis D. R., Johnston G. A. Amino acid transmitters in the mammalian central nervous system. Ergeb Physiol. 1974;69(0):97–188. doi: 10.1007/3-540-06498-2_3. [DOI] [PubMed] [Google Scholar]
- Cutler R. W., Dudzinski D. S. Effect of pentobarbital on uptake and release of [3H]GABA and [14C]glutamate by brain slices. Brain Res. 1974 Mar 8;67(3):546–548. doi: 10.1016/0006-8993(74)90504-6. [DOI] [PubMed] [Google Scholar]
- Cutler R. W., Markowitz D., Dudzinski D. S. The effect of barbiturates on (3H)GABA transport in rat cerebral cortex slices. Brain Res. 1974 Dec 6;81(2):189–197. doi: 10.1016/0006-8993(74)90935-4. [DOI] [PubMed] [Google Scholar]
- Cutler R. W., Young J. Effect of barbiturates on release endogenous amino acids from rat cortex slices. Neurochem Res. 1979 Jun;4(3):319–329. doi: 10.1007/BF00963802. [DOI] [PubMed] [Google Scholar]
- Davies L. P., Johnston G. A. Uptake and release of D- and L-aspartate by rat brain slices. J Neurochem. 1976 May;26(5):1007–1014. doi: 10.1111/j.1471-4159.1976.tb06485.x. [DOI] [PubMed] [Google Scholar]
- Dowling J. E., Boycott B. B. Organization of the primate retina: electron microscopy. Proc R Soc Lond B Biol Sci. 1966 Nov 15;166(1002):80–111. doi: 10.1098/rspb.1966.0086. [DOI] [PubMed] [Google Scholar]
- Dowling J. E., Brown J. E., Major D. Synapses of horizontal cells in rabbit and cat retinas. Science. 1966 Sep 30;153(3744):1639–1641. doi: 10.1126/science.153.3744.1639. [DOI] [PubMed] [Google Scholar]
- Duggan A. W., McLennan H. Bicuculline and inhibition in the thalamus. Brain Res. 1971 Jan 8;25(1):188–191. doi: 10.1016/0006-8993(71)90579-8. [DOI] [PubMed] [Google Scholar]
- ECCLES J. C., SCHMIDT R., WILLIS W. D. PHARMACOLOGICAL STUDIES ON PRESYNAPTIC INHIBITION. J Physiol. 1963 Oct;168:500–530. doi: 10.1113/jphysiol.1963.sp007205. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harding B. N. Dendro-dendritic synapses, including reciprocal synapses, in the ventrolateral nucleus of the monkey thalamus. Brain Res. 1971 Nov;34(1):181–185. doi: 10.1016/0006-8993(71)90360-x. [DOI] [PubMed] [Google Scholar]
- Huang L. Y., Barker J. L. Pentobarbital: stereospecific actions of (+) and (-) isomers revealed on cultured mammalian neurons. Science. 1980 Jan 11;207(4427):195–197. doi: 10.1126/science.7350656. [DOI] [PubMed] [Google Scholar]
- Iversen L. L., Neal M. J. The uptake of [3H]GABA by slices of rat cerebral cortex. J Neurochem. 1968 Oct;15(10):1141–1149. doi: 10.1111/j.1471-4159.1968.tb06831.x. [DOI] [PubMed] [Google Scholar]
- Kohlhardt M., Bauer B., Krause H., Fleckenstein A. New selective inhibitors of the transmembrane Ca conductivity in mammalian myocardial fibres. Studies with the voltage clamp technique. Experientia. 1972 Mar 15;28(3):288–289. doi: 10.1007/BF01928693. [DOI] [PubMed] [Google Scholar]
- LARRABEE M. G., POSTERNAK J. M. Selective action of anesthetics on synapses and axons in mammalian sympathetic ganglia. J Neurophysiol. 1952 Mar;15(2):91–114. doi: 10.1152/jn.1952.15.2.91. [DOI] [PubMed] [Google Scholar]
- Lieberman A. R., Webster K. E. Presynaptic dendrites and a distinctive class of synaptic vesicle in the rat dorsal lateral geniculate nucleus. Brain Res. 1972 Jul 13;42(1):196–200. doi: 10.1016/0006-8993(72)90053-4. [DOI] [PubMed] [Google Scholar]
- Macdonald R. L., Barker J. L. Anticonvulsant and anesthetic barbiturates: different postsynaptic actions in cultured mammalian neurons. Neurology. 1979 Apr;29(4):432–447. doi: 10.1212/wnl.29.4.432. [DOI] [PubMed] [Google Scholar]
- Malthe-Sørenssen D., Skrede K. K., Fonnum F. Calcium-dependent release of D-[3H]aspartate evoked by selective electrical stimulation of excitatory afferent fibres to hippocampal pyramidal cells in vitro. Neuroscience. 1979;4(9):1255–1263. doi: 10.1016/0306-4522(79)90155-6. [DOI] [PubMed] [Google Scholar]
- Minchin M. C. The effect of anaesthetics on the uptake and release of gamma-aminobutyrate and D-aspartate in rat brain slices. Br J Pharmacol. 1981 Jul;73(3):681–689. doi: 10.1111/j.1476-5381.1981.tb16803.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Minchin M. C. Veratrum alkaloids as transmitter-releasing agents. J Neurosci Methods. 1980 Apr;2(2):111–121. doi: 10.1016/0165-0270(80)90053-9. [DOI] [PubMed] [Google Scholar]
- Mitchell P. R., Martin I. L. Is GABA release modulated by presynaptic receptors? Nature. 1978 Aug 31;274(5674):904–905. doi: 10.1038/274904a0. [DOI] [PubMed] [Google Scholar]
- Nicoll R. A., Eccles J. C., Oshima T., Rubia F. Prolongation of hippocampal inhibitory postsynaptic potentials by barbiturates. Nature. 1975 Dec 18;258(5536):625–627. doi: 10.1038/258625a0. [DOI] [PubMed] [Google Scholar]
- Peck E. J., Miller A. L., Lester B. R. Pentobarbital and synaptic high-affinity receptive sites for gamma-aminobutyric acid. Brain Res Bull. 1976 Nov-Dec;1(6):595–597. doi: 10.1016/0361-9230(76)90087-3. [DOI] [PubMed] [Google Scholar]
- Pierau F. K., Matheson G. K., Wurster R. D. Presynaptic action of beta(4-chlorophenyl)-gaba. Exp Neurol. 1975 Aug;48(2):343–351. doi: 10.1016/0014-4886(75)90162-4. [DOI] [PubMed] [Google Scholar]
- Pierau F. K., Zimmermann P. Action of a GABA-derivative on postsynaptic potentials and membrane properties of cats' spinal motoneurones. Brain Res. 1973 May 17;54:376–380. doi: 10.1016/0006-8993(73)90064-4. [DOI] [PubMed] [Google Scholar]
- Potashner S. J. Baclofen: effects on amino acid release and metabolism in slices of guinea pig cerebral cortex. J Neurochem. 1979 Jan;32(1):103–109. doi: 10.1111/j.1471-4159.1979.tb04516.x. [DOI] [PubMed] [Google Scholar]
- Ralston H. J., 3rd, Herman M. M. The fine structure of neurons and synapses in ventrobasal thalamus of the cat. Brain Res. 1969 Jun;14(1):77–97. doi: 10.1016/0006-8993(69)90032-8. [DOI] [PubMed] [Google Scholar]
- Ransom B. R., Barker J. L. Pentobarbital modulates transmitter effects on mouse spinal neurones grown in tissue culture. Nature. 1975 Apr 24;254(5502):703–705. doi: 10.1038/254703a0. [DOI] [PubMed] [Google Scholar]
- Snodgrass S. R. Use of 3H-muscimol for GABA receptor studies. Nature. 1978 Jun 1;273(5661):392–394. doi: 10.1038/273392a0. [DOI] [PubMed] [Google Scholar]
- Uchizono K. Characteristics of excitatory and inhibitory synapses in the central nervous system of the cat. Nature. 1965 Aug 7;207(997):642–643. doi: 10.1038/207642a0. [DOI] [PubMed] [Google Scholar]
