Abstract
1 The synthesis of several butyrophenone analogues of haloperidol is described. 2 The effects of these compounds on alpha-adrenoceptors were evaluated by examining their ability to reduce alpha 1-stimulated K+ release from rat parotid slices and to displace [3H]-phentolamine from human platelet membrane alpha 2-adrenoceptors. 3 The affinity of haloperidol and its analogues for alpha 1-receptors was found to be 1 to 2 orders of magnitude greater than that for alpha 2-adrenoceptors. These observations suggest that most of the alpha-adrenoceptor activity of butyrophenones results from their interaction with alpha 1-adrenoceptors. 4 The relatively high affinity of the butyrophenones for alpha 1-adrenoceptors suggests that they may be useful as probes in studies of alpha 1-adrenoceptors in these and other tissues.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Clement-Cormier Y. C., Kebabian J. W., Petzold G. L., Greengard P. Dopamine-sensitive adenylate cyclase in mammalian brain: a possible site of action of antipsychotic drugs. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1113–1117. doi: 10.1073/pnas.71.4.1113. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Davis J. N., Maury W. Clonidine and related imidazolines are postsynaptic alpha adrenergic antagonists in dispersed rat parotid cells. J Pharmacol Exp Ther. 1978 Nov;207(2):425–430. [PubMed] [Google Scholar]
- Fain J. N., García-Sáinz J. A. Role of phosphatidylinositol turnover in alpha 1 and of adenylate cyclase inhibition in alpha 2 effects of catecholamines. Life Sci. 1980 Apr 14;26(15):1183–1194. doi: 10.1016/0024-3205(80)90062-4. [DOI] [PubMed] [Google Scholar]
- Friedman Z. Y., Selinger Z. A transient release of potassium mediated by the action of substance P on rat parotid slices. J Physiol. 1978 May;278:461–469. doi: 10.1113/jphysiol.1978.sp012317. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Greenberg D. A., Prichard D. C., Snyder S. H. Alpha-noradrenergic receptor binding in mammalian brain: differential labeling of agonist and antagonist states. Life Sci. 1976 Jul 1;19(1):69–76. doi: 10.1016/0024-3205(76)90375-1. [DOI] [PubMed] [Google Scholar]
- Janssen P. A., Allewijn F. T. The distribution of the butyrophenones haloperidol, trifluperidol, moperone, and clofluperol in rats, and its relationship with their neuroleptic activity. Arzneimittelforschung. 1969 Feb;19(2):199–208. [PubMed] [Google Scholar]
- Karobath M., Leitich H. Antipsychotic drugs and dopamine-stimulated adenylate cyclase prepared from corpus striatum of rat brain. Proc Natl Acad Sci U S A. 1974 Jul;71(7):2915–2918. doi: 10.1073/pnas.71.7.2915. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Laduron P. M., Janssen P. F., Leysen J. E. Spiperone: a ligand of choice for neuroleptic receptors. 3. Subcellular distribution of neuroleptic drugs and their receptors in various rat brain areas. Biochem Pharmacol. 1978 Feb 1;27(3):323–328. doi: 10.1016/0006-2952(78)90235-6. [DOI] [PubMed] [Google Scholar]
- Leysen J. E., Niemegeers C. J., Tollenaere J. P., Laduron P. M. Serotonergic component of neuroleptic receptors. Nature. 1978 Mar 9;272(5649):168–171. doi: 10.1038/272168a0. [DOI] [PubMed] [Google Scholar]
- Nakajima T., Naitoh F., Kuruma I. Dopamine-sensitive adenylate cyclase in the rat kidney particulate preparation. Eur J Pharmacol. 1977 Jan 21;41(2):163–169. doi: 10.1016/0014-2999(77)90205-9. [DOI] [PubMed] [Google Scholar]
- Newman K. D., Williams L. T., Bishopric N. H., Lefkowitz R. J. Identification of alpha-adrenergic receptors in human platelets by [3H]dihydroergocryptine binding. J Clin Invest. 1978 Feb;61(2):395–402. doi: 10.1172/JCI108950. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peroutka S. J., Snyder S. H. Long-term antidepressant treatment decreases spiroperidol-labeled serotonin receptor binding. Science. 1980 Oct 3;210(4465):88–90. doi: 10.1126/science.6251550. [DOI] [PubMed] [Google Scholar]
- Steer M. L., Khorana J., Galgoci B. Quantitation and characterization of human platelet alpha-adrenergic receptors using [3H]phentolamine. Mol Pharmacol. 1979 Nov;16(3):719–728. [PubMed] [Google Scholar]
- U'Prichard D. C., Greenberg D. A., Snyder S. H. Binding characteristics of a radiolabeled agonist and antagonist at central nervous system alpha noradrenergic receptors. Mol Pharmacol. 1977 May;13(3):454–473. [PubMed] [Google Scholar]
- Williams L. T., Lefkowitz R. J. Alpha-adrenergic receptor identification by (3H)dihydroergocryptine binding. Science. 1976 May 21;192(4241):791–793. doi: 10.1126/science.4894. [DOI] [PubMed] [Google Scholar]
- Wood C. L., Arnett C. D., Clarke W. R., Tsai B. S., Lefkowitz R. J. Subclassification of alpha-adrenergic receptors by direct binding studies. Biochem Pharmacol. 1979 Apr 15;28(8):1277–1282. doi: 10.1016/0006-2952(79)90424-6. [DOI] [PubMed] [Google Scholar]
- van Rossum J. M. The significance of dopamine-receptor blockade for the mechanism of action of neuroleptic drugs. Arch Int Pharmacodyn Ther. 1966 Apr;160(2):492–494. [PubMed] [Google Scholar]
