Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1982 Jan;75(1):213–217. doi: 10.1111/j.1476-5381.1982.tb08775.x

Synthesis of new haloperidol analogues and characterization of their interactions with alpha-adrenoceptors in rat parotid slices and human platelet membranes.

D Atlas, Z Friedman, Y Litvin, M L Steer
PMCID: PMC2071471  PMID: 6280800

Abstract

1 The synthesis of several butyrophenone analogues of haloperidol is described. 2 The effects of these compounds on alpha-adrenoceptors were evaluated by examining their ability to reduce alpha 1-stimulated K+ release from rat parotid slices and to displace [3H]-phentolamine from human platelet membrane alpha 2-adrenoceptors. 3 The affinity of haloperidol and its analogues for alpha 1-receptors was found to be 1 to 2 orders of magnitude greater than that for alpha 2-adrenoceptors. These observations suggest that most of the alpha-adrenoceptor activity of butyrophenones results from their interaction with alpha 1-adrenoceptors. 4 The relatively high affinity of the butyrophenones for alpha 1-adrenoceptors suggests that they may be useful as probes in studies of alpha 1-adrenoceptors in these and other tissues.

Full text

PDF
213

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Clement-Cormier Y. C., Kebabian J. W., Petzold G. L., Greengard P. Dopamine-sensitive adenylate cyclase in mammalian brain: a possible site of action of antipsychotic drugs. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1113–1117. doi: 10.1073/pnas.71.4.1113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Davis J. N., Maury W. Clonidine and related imidazolines are postsynaptic alpha adrenergic antagonists in dispersed rat parotid cells. J Pharmacol Exp Ther. 1978 Nov;207(2):425–430. [PubMed] [Google Scholar]
  3. Fain J. N., García-Sáinz J. A. Role of phosphatidylinositol turnover in alpha 1 and of adenylate cyclase inhibition in alpha 2 effects of catecholamines. Life Sci. 1980 Apr 14;26(15):1183–1194. doi: 10.1016/0024-3205(80)90062-4. [DOI] [PubMed] [Google Scholar]
  4. Friedman Z. Y., Selinger Z. A transient release of potassium mediated by the action of substance P on rat parotid slices. J Physiol. 1978 May;278:461–469. doi: 10.1113/jphysiol.1978.sp012317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Greenberg D. A., Prichard D. C., Snyder S. H. Alpha-noradrenergic receptor binding in mammalian brain: differential labeling of agonist and antagonist states. Life Sci. 1976 Jul 1;19(1):69–76. doi: 10.1016/0024-3205(76)90375-1. [DOI] [PubMed] [Google Scholar]
  6. Janssen P. A., Allewijn F. T. The distribution of the butyrophenones haloperidol, trifluperidol, moperone, and clofluperol in rats, and its relationship with their neuroleptic activity. Arzneimittelforschung. 1969 Feb;19(2):199–208. [PubMed] [Google Scholar]
  7. Karobath M., Leitich H. Antipsychotic drugs and dopamine-stimulated adenylate cyclase prepared from corpus striatum of rat brain. Proc Natl Acad Sci U S A. 1974 Jul;71(7):2915–2918. doi: 10.1073/pnas.71.7.2915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  9. Laduron P. M., Janssen P. F., Leysen J. E. Spiperone: a ligand of choice for neuroleptic receptors. 3. Subcellular distribution of neuroleptic drugs and their receptors in various rat brain areas. Biochem Pharmacol. 1978 Feb 1;27(3):323–328. doi: 10.1016/0006-2952(78)90235-6. [DOI] [PubMed] [Google Scholar]
  10. Leysen J. E., Niemegeers C. J., Tollenaere J. P., Laduron P. M. Serotonergic component of neuroleptic receptors. Nature. 1978 Mar 9;272(5649):168–171. doi: 10.1038/272168a0. [DOI] [PubMed] [Google Scholar]
  11. Nakajima T., Naitoh F., Kuruma I. Dopamine-sensitive adenylate cyclase in the rat kidney particulate preparation. Eur J Pharmacol. 1977 Jan 21;41(2):163–169. doi: 10.1016/0014-2999(77)90205-9. [DOI] [PubMed] [Google Scholar]
  12. Newman K. D., Williams L. T., Bishopric N. H., Lefkowitz R. J. Identification of alpha-adrenergic receptors in human platelets by [3H]dihydroergocryptine binding. J Clin Invest. 1978 Feb;61(2):395–402. doi: 10.1172/JCI108950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Peroutka S. J., Snyder S. H. Long-term antidepressant treatment decreases spiroperidol-labeled serotonin receptor binding. Science. 1980 Oct 3;210(4465):88–90. doi: 10.1126/science.6251550. [DOI] [PubMed] [Google Scholar]
  14. Steer M. L., Khorana J., Galgoci B. Quantitation and characterization of human platelet alpha-adrenergic receptors using [3H]phentolamine. Mol Pharmacol. 1979 Nov;16(3):719–728. [PubMed] [Google Scholar]
  15. U'Prichard D. C., Greenberg D. A., Snyder S. H. Binding characteristics of a radiolabeled agonist and antagonist at central nervous system alpha noradrenergic receptors. Mol Pharmacol. 1977 May;13(3):454–473. [PubMed] [Google Scholar]
  16. Williams L. T., Lefkowitz R. J. Alpha-adrenergic receptor identification by (3H)dihydroergocryptine binding. Science. 1976 May 21;192(4241):791–793. doi: 10.1126/science.4894. [DOI] [PubMed] [Google Scholar]
  17. Wood C. L., Arnett C. D., Clarke W. R., Tsai B. S., Lefkowitz R. J. Subclassification of alpha-adrenergic receptors by direct binding studies. Biochem Pharmacol. 1979 Apr 15;28(8):1277–1282. doi: 10.1016/0006-2952(79)90424-6. [DOI] [PubMed] [Google Scholar]
  18. van Rossum J. M. The significance of dopamine-receptor blockade for the mechanism of action of neuroleptic drugs. Arch Int Pharmacodyn Ther. 1966 Apr;160(2):492–494. [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES