Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1982 Jan;75(1):65–75. doi: 10.1111/j.1476-5381.1982.tb08758.x

The effects of a series of omega-phosphonic alpha-carboxylic amino acids on electrically evoked and excitant amino acid-induced responses in isolated spinal cord preparations.

R H Evans, A A Francis, A W Jones, D A Smith, J C Watkins
PMCID: PMC2071472  PMID: 7042024

Abstract

1 The depressant actions on evoked electrical activity and the excitant amino acid antagonist properties of a range of omega-phosphonic alpha-carboxylic amino acids have been investigated in the isolated spinal cord preparations of the frog or immature rat. 2 When tested on dorsal root-evoked ventral root potentials, members of the homologous series from 2- amino-5-phosphonovaleric acid to 2-amino-8-phosphonooctanoic acid showed depressant actions which correlated with the ability of the substances to antagonize selectivity motoneuronal depolarizations induced by N-methyl-D-aspartate. 3 2-Amino-5-phosphonovalerate was the most potent substance of the series giving an apparent KD of 1.4 microM for the antagonism of responses to N-methyl-D-aspartate. 4 A comparison of the (+)- and (-)-forms of 2-amino-5-phosphonovalerate indicated that the N-methyl-D-aspartate antagonist activity and the neuronal depressant action of this substance were both due mainly to the (-)-isomer. 5 The (-)- and (+)-forms of 2-amino-4-phosphonobutyrate had different actions. The (-)-forms of this substance had a relatively weak and non-selective antagonist action on depolarizations induced by N-methyl-D-aspartate, quisqualate and kainate and a similarly weak depressant effect when tested on evoked electrical activity. The (+)-form was more potent than he (-)-form in depressing electrically evoked activity but did not antagonize responses to amino acid excitants. At concentrations higher than those required to depress electrically evoked activity, the (+)-form produced depolarization. This action was blocked by 2-amino-5-phosphonovalerate.

Full text

PDF
65

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allan R. D., Evans R. H., Johnston G. A. gamma-Aminobutyric acid agonists: an in vitro comparison between depression of spinal synaptic activity and depolarization of spinal root fibres in the rat. Br J Pharmacol. 1980 Dec;70(4):609–615. doi: 10.1111/j.1476-5381.1980.tb09779.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ault B., Evans R. H., Francis A. A., Oakes D. J., Watkins J. C. Selective depression of excitatory amino acid induced depolarizations by magnesium ions in isolated spinal cord preparations. J Physiol. 1980 Oct;307:413–428. doi: 10.1113/jphysiol.1980.sp013443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barron D. H., Matthews B. H. The interpretation of potential changes in the spinal cord. J Physiol. 1938 Apr 14;92(3):276–321. doi: 10.1113/jphysiol.1938.sp003603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bergey G. K., Martin M. R., Hermes M. Effects of D,L-alpha-aminoadipate on postsynaptic amino acid responses in cultured mouse spinal cord neurons. Brain Res. 1980 Jul 7;193(1):199–207. doi: 10.1016/0006-8993(80)90957-9. [DOI] [PubMed] [Google Scholar]
  5. Biscoe T. J., Evans R. H., Headley P. M., Martin M. R., Watkins J. C. Structure-activity relations of excitatory amino acids on frog and rat spinal neurones. Br J Pharmacol. 1976 Nov;58(3):373–382. doi: 10.1111/j.1476-5381.1976.tb07714.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cull-Candy S. G., Donnellan J. F., James R. W., Lunt G. G. 2-Amino-4-phosphonobutyric acid as a glutamate antagonist on locust muscle. Nature. 1976 Jul 29;262(5567):408–409. doi: 10.1038/262408a0. [DOI] [PubMed] [Google Scholar]
  7. Curtis D. R., Watkins J. C. The pharmacology of amino acids related to gamma-aminobutyric acid. Pharmacol Rev. 1965 Dec;17(4):347–391. [PubMed] [Google Scholar]
  8. Davies J., Francis A. A., Jones A. W., Watkins J. C. 2-Amino-5-phosphonovalerate (2APV), a potent and selective antagonist of amino acid-induced and synaptic excitation. Neurosci Lett. 1981 Jan 1;21(1):77–81. doi: 10.1016/0304-3940(81)90061-6. [DOI] [PubMed] [Google Scholar]
  9. Davies J., Watkins J. C. Selective antagonism of amino acid-induced and synaptic excitation in the cat spinal cord. J Physiol. 1979 Dec;297(0):621–635. doi: 10.1113/jphysiol.1979.sp013060. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dudel J. Aspartate and other inhibitors of excitatory synaptic transmission in crayfish muscle. Pflugers Arch. 1977 May 6;369(1):7–16. doi: 10.1007/BF00580803. [DOI] [PubMed] [Google Scholar]
  11. Evans R. H. Evidence supporting the indirect depolarization of primary afferent terminals in the frog by excitatory amino acids. J Physiol. 1980 Jan;298:25–35. doi: 10.1113/jphysiol.1980.sp013064. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Evans R. H., Francis A. A., Hunt K., Oakes D. J., Watkins J. C. Antagonism of excitatory amino acid-induced responses and of synaptic excitation in the isolated spinal cord of the frog. Br J Pharmacol. 1979 Dec;67(4):591–603. doi: 10.1111/j.1476-5381.1979.tb08706.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Evans R. H. The effects of amino acids and antagonists on the isolated hemisected spinal cord of the immature rat. Br J Pharmacol. 1978 Feb;62(2):171–176. doi: 10.1111/j.1476-5381.1978.tb08442.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Evans R. H., Watkins J. C. Pharmacological antagonists of excitant amino acid action. Life Sci. 1981 Mar 23;28(12):1303–1308. doi: 10.1016/0024-3205(81)90401-x. [DOI] [PubMed] [Google Scholar]
  15. Evans R. H., Watkins J. C. Specific antagonism of excitant amino acids in the isolated spinal cord of the neonatal rat. Eur J Pharmacol. 1978 Jul 15;50(2):123–129. doi: 10.1016/0014-2999(78)90007-9. [DOI] [PubMed] [Google Scholar]
  16. Francis A. A., Jones A. W., Watkins J. C. Dipeptide antagonists of amino acid-induced and synaptic excitation in the frog spinal cord. J Neurochem. 1980 Dec;35(6):1458–1460. doi: 10.1111/j.1471-4159.1980.tb09025.x. [DOI] [PubMed] [Google Scholar]
  17. Koerner J. F., Cotman C. W. Micromolar L-2-amino-4-phosphonobutyric acid selectively inhibits perforant path synapses from lateral entorhinal cortex. Brain Res. 1981 Jul 6;216(1):192–198. doi: 10.1016/0006-8993(81)91288-9. [DOI] [PubMed] [Google Scholar]
  18. Kudo Y. The pharmacology of the amphibian spinal cord. Prog Neurobiol. 1978;11(1):1–76. doi: 10.1016/0301-0082(78)90007-2. [DOI] [PubMed] [Google Scholar]
  19. McLennan H., Lodge D. The antagonism of amino acid-induced excitation of spinal neurones in the cat. Brain Res. 1979 Jun 15;169(1):83–90. doi: 10.1016/0006-8993(79)90375-5. [DOI] [PubMed] [Google Scholar]
  20. Otsuka M., Konishi S. Electrophysiology of mammalian spinal cord in vitro. Nature. 1974 Dec 20;252(5485):733–734. doi: 10.1038/252733a0. [DOI] [PubMed] [Google Scholar]
  21. Segal M. The actions of glutamic acid on neurons in the rat hippocampal slice. Adv Biochem Psychopharmacol. 1981;27:217–225. [PubMed] [Google Scholar]
  22. Slaughter M. M., Miller R. F. 2-amino-4-phosphonobutyric acid: a new pharmacological tool for retina research. Science. 1981 Jan 9;211(4478):182–185. doi: 10.1126/science.6255566. [DOI] [PubMed] [Google Scholar]
  23. WATKINS J. C. THE SYNTHESIS OF SOME ACIDIC AMINO ACIDS POSSESSING NEUROPHARMACOLOGICAL ACTIVITY. J Med Pharm Chem. 1962 Nov;91:1187–1199. doi: 10.1021/jm01241a010. [DOI] [PubMed] [Google Scholar]
  24. Watkins J. C., Curtis D. R., Brand S. S. Phosphonic analogues as antagonists of amino acid excitants. J Pharm Pharmacol. 1977 May;29(5):324–324. doi: 10.1111/j.2042-7158.1977.tb11328.x. [DOI] [PubMed] [Google Scholar]
  25. Watkins J. C., Evans R. H. Excitatory amino acid transmitters. Annu Rev Pharmacol Toxicol. 1981;21:165–204. doi: 10.1146/annurev.pa.21.040181.001121. [DOI] [PubMed] [Google Scholar]
  26. White W. F., Nadler J. V., Cotman C. W. The effect of acidic amino acid antagonists on synaptic transmission in the hippocampal formation in vitro. Brain Res. 1979 Mar 23;164:177–194. doi: 10.1016/0006-8993(79)90014-3. [DOI] [PubMed] [Google Scholar]
  27. White W. F., Nadler J. V., Hamberger A., Cotman C. W., Cummins J. T. Glutamate as transmitter of hippocampal perforant path. Nature. 1977 Nov 24;270(5635):356–357. doi: 10.1038/270356a0. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES