Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1982 Mar;75(3):451–454. doi: 10.1111/j.1476-5381.1982.tb09161.x

Effects of caffeine, theophylline and theobromine on scheduled controlled responding in rats.

J M Carney
PMCID: PMC2071561  PMID: 7066599

Abstract

1 Rats were trained to respond under a variable interval 30 s (VI 30) schedule of food reinforcement. Caffeine (0.32-32 mg/kg), theophylline (1.0-56 mg/kg) and theobromine (10-320 mg/kg) in general produced dose-related decreases in operant responding. At relatively low doses, caffeine (1.0 mg/kg) and theophylline (3.2 mg/kg) produced slight but nonsignificant increases in VI 30 responding. 3 The rank order of potency for producing decreases in responding was caffeine greater than theophylline greater than theobromine. 4 Daily caffeine injections (32 mg/kg, i.p.) resulted in the development of caffeine tolerance. This tolerance was characterized by a 6 fold shift to the right in the caffeine dose-effect curve. Saline substitution for the 32.0 mg/kg caffeine maintenance dose resulted in a substantial decrease in responding.

Full text

PDF
451

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ando K. Profile of drug effects on temporally spaced responding in rats. Pharmacol Biochem Behav. 1975 Sep-Oct;3(5):833–841. doi: 10.1016/0091-3057(75)90114-8. [DOI] [PubMed] [Google Scholar]
  2. Berkowitz B. A., Tarver J. H., Spector S. Release of norepinephrine in the central nervous system by theophylline and caffeine. Eur J Pharmacol. 1970 Apr;10(1):64–71. doi: 10.1016/0014-2999(70)90158-5. [DOI] [PubMed] [Google Scholar]
  3. Bruns R. F., Daly J. W., Snyder S. H. Adenosine receptors in brain membranes: binding of N6-cyclohexyl[3H]adenosine and 1,3-diethyl-8-[3H]phenylxanthine. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5547–5551. doi: 10.1073/pnas.77.9.5547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cheung W. Y. Properties of cyclic 3',5'-nucleotide phosphodiesterase from rat brain. Biochemistry. 1967 Apr;6(4):1079–1087. doi: 10.1021/bi00856a017. [DOI] [PubMed] [Google Scholar]
  5. Davis T. R., Kensler C. J., Dews P. B. Comparison of behavioral effects of nicotine, d-amphetamine, caffeine and dimethylheptyl tetrahydrocannabinol in squirrel monkeys. Psychopharmacologia. 1973 Aug 22;32(1):51–65. doi: 10.1007/BF00421707. [DOI] [PubMed] [Google Scholar]
  6. Diamond I., Goldberg A. L. Uptake and release of 45Ca by brain microsomes, synaptosomes and synaptic vesicles. J Neurochem. 1971 Aug;18(8):1419–1431. doi: 10.1111/j.1471-4159.1971.tb00005.x. [DOI] [PubMed] [Google Scholar]
  7. Harris A. D., Snell D., Loh H. H. Effects of stimulants, anorectics, and related drugs on schedule-controlled behavior. Psychopharmacology (Berl) 1978 Jan 31;56(1):49–55. doi: 10.1007/BF00571408. [DOI] [PubMed] [Google Scholar]
  8. MECHNER F., LATRANYI M. Behavioral effects of caffeine, methamphetamine, and methylphenidate in the rat. J Exp Anal Behav. 1963 Jul;6:331–342. doi: 10.1901/jeab.1963.6-331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. McKim W. A. The effect of caffeine, theophylline and amphetamine on operant responding of the mouse. Psychopharmacology (Berl) 1980;68(2):135–138. doi: 10.1007/BF00432130. [DOI] [PubMed] [Google Scholar]
  10. McMillan D. E. Some interactions between sympathomimetic amines and amine-depleting agents on the schedule-controlled behavior of the pigeon and the squirrel monkey. J Pharmacol Exp Ther. 1968 Sep;163(1):172–187. [PubMed] [Google Scholar]
  11. Modrow H. E., Holloway F. A., Carney J. M. Caffeine discrimination in the rat. Pharmacol Biochem Behav. 1981 May;14(5):683–688. doi: 10.1016/0091-3057(81)90131-3. [DOI] [PubMed] [Google Scholar]
  12. Sanger D. J. The effects of caffeine on timing behaviour in rodents: comparisons with chlordiazepoxide. Psychopharmacology (Berl) 1980;68(3):305–309. doi: 10.1007/BF00428121. [DOI] [PubMed] [Google Scholar]
  13. Schuster C. R., Dockens W. S., Woods J. H. Behavioral variables affecting the development of amphetamine tolerance. Psychopharmacologia. 1966;9(2):170–182. doi: 10.1007/BF00404721. [DOI] [PubMed] [Google Scholar]
  14. Snyder S. H., Katims J. J., Annau Z., Bruns R. F., Daly J. W. Adenosine receptors and behavioral actions of methylxanthines. Proc Natl Acad Sci U S A. 1981 May;78(5):3260–3264. doi: 10.1073/pnas.78.5.3260. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Wayner M. J., Jolicoeur F. B., Rondeau D. B., Barone F. C. Effects of acute and chronic administration of caffeine on schedule dependent and schedule induced behavior. Pharmacol Biochem Behav. 1976 Sep;5(3):343–348. doi: 10.1016/0091-3057(76)90087-3. [DOI] [PubMed] [Google Scholar]
  16. Webb D., Levine T. E. Effects of caffeine on DRL performance in the mouse. Pharmacol Biochem Behav. 1978 Jul;9(1):7–10. doi: 10.1016/0091-3057(78)90004-7. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES