Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1982 Mar;75(3):447–450. doi: 10.1111/j.1476-5381.1982.tb09160.x

The effect of gamma-hydroxybutyrate on mouse striatal tyramine, dopamine and homovanillic acid.

A V Juorio
PMCID: PMC2071564  PMID: 7066598

Abstract

1 The concentrations of p- and m-tyramine, dopamine and homovanillic acid were measured in the mouse striatum following the subcutaneous injection of gamma-hydroxybutyrate; their control levels were 19.8, 6.3, 9600 and 1130 ng/g respectively. 2 The administration of 500-1000 mg/kg of gamma-hydroxybutyrate produced a reduction in p-tyramine that lasted at least 8 h. m-Tyramine and dopamine were significantly increased for at least 4 h. The levels of homovanillic acid were increased at 1 and 2 h after drug administration. 3 There experiments strongly suggest that the increases in dopamine turnover produced by gamma-hydroxybutyrate caused reciprocal changes in striatal tyramine that are similar to those produced by drug or treatment that increase dopamine turnover and tyrosine hydroxylase activity.

Full text

PDF
447

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ANDEN N. E., ROOS B. E., WERDINIUS B. On the occurrence of homovanillic acid in brain and cerebrospinal fluid and its determination by a fluorometric method. Life Sci. 1963 Jul;(7):448–458. doi: 10.1016/0024-3205(63)90132-2. [DOI] [PubMed] [Google Scholar]
  2. Bartholini G., Pletscher A. Enhancement of tyrosine hydroxylation within the brain by chlorpromazine. Experientia. 1969 Sep 15;25(9):919–920. doi: 10.1007/BF01898062. [DOI] [PubMed] [Google Scholar]
  3. Faull R. L., Laverty R. Changes in dopamine levels in the corpus striatum following lesions in the substantia nigra. Exp Neurol. 1969 Mar;23(3):332–340. doi: 10.1016/0014-4886(69)90081-8. [DOI] [PubMed] [Google Scholar]
  4. Handforth A., Sourkes T. L. Inhibition by dopamine agonists of dopamine accumulation following gamma-hydroxybutyrate treatment. Eur J Pharmacol. 1975 Dec;34(2):311–319. doi: 10.1016/0014-2999(75)90257-5. [DOI] [PubMed] [Google Scholar]
  5. Hutchins D. A., Rayevsky K. S., Sharman D. F. The effect of sodium -hydroxybutyrate on the metabolism of dopamine in the brain. Br J Pharmacol. 1972 Nov;46(3):409–415. doi: 10.1111/j.1476-5381.1972.tb08138.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Jones R. S., Boulton A. A. Interactions between p-tyramine, m-tyramine, or beta-phenylethylamine and dopamine on single neurones in the cortex and caudate nucleus of the rat. Can J Physiol Pharmacol. 1980 Feb;58(2):222–227. doi: 10.1139/y80-038. [DOI] [PubMed] [Google Scholar]
  7. Juorio A. V. Drug-induced changes in the formation, storage and metabolism of tyramine in the mouse. Br J Pharmacol. 1979 Jul;66(3):377–384. doi: 10.1111/j.1476-5381.1979.tb10841.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Juorio A. V. Effect of chlorpromazine and other anti-psychotic drugs on mouse striatal tyramines. Life Sci. 1977 May 15;20(10):1663–1667. doi: 10.1016/0024-3205(77)90340-x. [DOI] [PubMed] [Google Scholar]
  9. Juorio A. V. Effects of D-amphetamine and antipsychotic drug administration on striatal tyramine levels in the mouse. Brain Res. 1977 Apr 22;126(1):181–184. doi: 10.1016/0006-8993(77)90227-x. [DOI] [PubMed] [Google Scholar]
  10. Juorio A. V., Jones R. S. The effect of mesencephalic lesions on tyramine and dopamine in the caudate nucleus of the rat. J Neurochem. 1981 Jun;36(6):1898–1903. doi: 10.1111/j.1471-4159.1981.tb10813.x. [DOI] [PubMed] [Google Scholar]
  11. LAVERTY R., SHARMAN D. F. THE ESTIMATION OF SMALL QUANTITIES OF 3,4-DIHYDROXYPHENYLETHYLAMINE IN TISSUES. Br J Pharmacol Chemother. 1965 Apr;24:538–548. doi: 10.1111/j.1476-5381.1965.tb01744.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Morgenroth V. H., 3rd, Walters J. R., Roth R. H. Dopaminergic neurons--alteration in the kinetic properties of tyrosine hydroxylase after cessation of impulse flow. Biochem Pharmacol. 1976 Mar 15;25(6):655–661. doi: 10.1016/0006-2952(76)90240-9. [DOI] [PubMed] [Google Scholar]
  13. Nagatsu T., Levitt M., Udenfriend S. Conversion of L-tyrosine to 3,4-dihydroxyphenylalanine by cell-free preparations of brain and sympathetically innervated tissues. Biochem Biophys Res Commun. 1964;14:543–549. doi: 10.1016/0006-291x(64)90266-9. [DOI] [PubMed] [Google Scholar]
  14. Philips S. R., Davis B. A., Durden D. A., Boulton A. A. Identification and distribution of m-tyramine in the rat. Can J Biochem. 1975 Jan;53(1):65–69. doi: 10.1139/o75-010. [DOI] [PubMed] [Google Scholar]
  15. Philips S. R., Durden D. A., Boulton A. A. Identification and distribution of p-tyramine in the rat. Can J Biochem. 1974 May;52(5):366–373. doi: 10.1139/o74-055. [DOI] [PubMed] [Google Scholar]
  16. Roos B. E. Decrease in homovanillic acid as evidence for dopamine receptor stimulation by apomorphine in the neostriatum of the rat. J Pharm Pharmacol. 1969 Apr;21(4):263–264. doi: 10.1111/j.2042-7158.1969.tb08243.x. [DOI] [PubMed] [Google Scholar]
  17. SPECTOR S., SJOERDSMA A., UDENFRIEND S. BLOCKADE OF ENDOGENOUS NOREPINEPHRINE SYNTHESIS BY ALPHA-METHYL-TYROSINE, AN INHIBITOR OF TYROSINE HYDROXYLASE. J Pharmacol Exp Ther. 1965 Jan;147:86–95. [PubMed] [Google Scholar]
  18. Walters J. R., Roth R. H., Aghajanian G. K. Dopaminergic neurons: similar biochemical and histochemical effects of gamma-hydroxybutyrate and acute lesions of the nigro-neostriatal pathway. J Pharmacol Exp Ther. 1973 Sep;186(3):630–639. [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES