Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1982 Mar;75(3):553–558. doi: 10.1111/j.1476-5381.1982.tb09173.x

Effect of converting enzyme inhibition on the renal haemodynamic responses to noradrenaline infusion in the rat.

L A Arundell, E J Johns
PMCID: PMC2071565  PMID: 6175369

Abstract

1 The renal haemodynamic responses to a close arterial infusion of noradrenaline (29.7-177.9 nmol kg-1 h-1) were measured in rats anaesthetized with pentobarbitone. Systemic blood pressure was unaffected by noradrenaline infusion at this dose level. Renal blood flow was significantly reduced by 16% while glomerular filtration rate remained unchanged. These responses resulted in a rise in filtration fraction of some 10%. 2 In a separate group of animals, noradrenaline infusion in this manner and at similar dose rate increased plasma renin activity approximately 3 fold. 3 Continuous infusion of the angiotensin converting enzyme inhibitor, teprotide (3.36 mumol kg-1 h-1), had no measurable effect on systemic blood pressure, renal blood flow, glomerular filtration rate or filtration fraction. 4 Infusion of noradrenaline into these animals receiving teprotide caused a significant fall in renal blood flow of 16%. There was a fall in glomerular filtration rate of some 17% which was significantly different from the response observed in the animals not receiving teprotide. There was a consequent small but insignificant fall in filtration fraction. 5 These data show that the regulation of glomerular filtration rate in response to the vasoconstrictor drug, noradrenaline, is partly mediated via the renin-angiotensin system. They provide evidence for a role of intrarenal angiotensin II in regulating glomerular filtration by causing efferent arteriolar vasoconstriction.

Full text

PDF
553

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arendshorst W. J., Finn W. F. Renal hemodynamics in the rat before and during inhibition of angiotensin II. Am J Physiol. 1977 Oct;233(4):F290–F297. doi: 10.1152/ajprenal.1977.233.4.F290. [DOI] [PubMed] [Google Scholar]
  2. Barajas L. Innervation of the renal cortex. Fed Proc. 1978 Apr;37(5):1192–1201. [PubMed] [Google Scholar]
  3. Coote J. H., Johns E. J., Macleod V. H., Singer B. Effect of renal nerve stimulation, renal blood flow and adrenergic blockade on plasma renin activity in the cat. J Physiol. 1972 Oct;226(1):15–36. doi: 10.1113/jphysiol.1972.sp009971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Davis J. O., Freeman R. H. Mechanisms regulating renin release. Physiol Rev. 1976 Jan;56(1):1–56. doi: 10.1152/physrev.1976.56.1.1. [DOI] [PubMed] [Google Scholar]
  5. Erdös E. G. The angiotensin I converting enzyme. Fed Proc. 1977 Apr;36(5):1760–1765. [PubMed] [Google Scholar]
  6. Frega N. S., Davalos M., Leaf A. Effect of endogenous angiotensin on the efferent glomerular arteriole of rat kidney. Kidney Int. 1980 Sep;18(3):323–327. doi: 10.1038/ki.1980.142. [DOI] [PubMed] [Google Scholar]
  7. Haber E., Koerner T., Page L. B., Kliman B., Purnode A. Application of a radioimmunoassay for angiotensin I to the physiologic measurements of plasma renin activity in normal human subjects. J Clin Endocrinol Metab. 1969 Oct;29(10):1349–1355. doi: 10.1210/jcem-29-10-1349. [DOI] [PubMed] [Google Scholar]
  8. Hall J. E., Coleman T. G., Guyton A. C., Balfe J. W., Salgado H. C. Intrarenal role of angiotensin II and [des-Asp1]angiotensin II. Am J Physiol. 1979 Mar;236(3):F252–F259. doi: 10.1152/ajprenal.1979.236.3.F252. [DOI] [PubMed] [Google Scholar]
  9. Hall J. E., Guyton A. C., Cowley A. W., Jr Dissociation of renal blood flow and filtration rate autoregulation by renin depletion. Am J Physiol. 1977 Mar;232(3):F215–F221. doi: 10.1152/ajprenal.1977.232.3.F215. [DOI] [PubMed] [Google Scholar]
  10. Hall J. E., Guyton A. C., Jackson T. E., Coleman T. G., Lohmeier T. E., Trippodo N. C. Control of glomerular filtration rate by renin-angiotensin system. Am J Physiol. 1977 Nov;233(5):F366–F372. doi: 10.1152/ajprenal.1977.233.5.F366. [DOI] [PubMed] [Google Scholar]
  11. Ichikawa I., Brenner B. M. Importance of efferent arteriolar vascular tone in regulation of proximal tubule fluid reabsorption and glomerulotubular balance in the rat. J Clin Invest. 1980 May;65(5):1192–1201. doi: 10.1172/JCI109774. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Johns E. J. A comparison of the ability of two angiotensin II receptor blocking drugs, 1-Sar; 8-Ala angiotensin II and 1-Sar, 8-Ile angiotensin II, to modify the regulation of glomerular filtration rate in the cat. Br J Pharmacol. 1980;71(2):499–506. doi: 10.1111/j.1476-5381.1980.tb10963.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Johns E. J. Action of angiotensin I converting enzyme inhibitor on the control of renal function in the cat. Clin Sci (Lond) 1979 Apr;56(4):365–371. doi: 10.1042/cs0560365. [DOI] [PubMed] [Google Scholar]
  14. Johns E. J. An investigation into the type of beta-adrenoceptor mediating sympathetically activated renin release in the cat. Br J Pharmacol. 1981 Jul;73(3):749–754. doi: 10.1111/j.1476-5381.1981.tb16811.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Johns E. J., Lewis B. A., Singer B. The sodium-retaining effect of renal nerve activity in the cat: role of angiotensin formation. Clin Sci Mol Med. 1976 Jul;51(1):93–102. doi: 10.1042/cs0510093. [DOI] [PubMed] [Google Scholar]
  16. Johns E. J., Singer B. Comparison of the effects of propranolol and ICI 66082 in blocking the renin releasing effect of renal nerve stimulation in the cat. Br J Pharmacol. 1974 Oct;52(2):315–318. doi: 10.1111/j.1476-5381.1974.tb09715.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Krahé P., Hofbauer K. G., Gross F. Effects of endogenous renin on the function of the isolated kidney. Life Sci I. 1970 Nov 15;9(22):1317–1320. doi: 10.1016/0024-3205(70)90272-9. [DOI] [PubMed] [Google Scholar]
  18. Marshall G. R. Structure--activity relations of antagonists of the renin--angiotensin system. Fed Proc. 1976 Nov;35(13):2494–2501. [PubMed] [Google Scholar]
  19. McCaa R. E. Studies in vivo with angiotensin I converting enzyme (kininase II) inhibitors. Fed Proc. 1979 Dec;38(13):2783–2787. [PubMed] [Google Scholar]
  20. Mimran A., Casellas D., Dupont M. Indirect evidence against a role of the kinin system in the renal hemodynamic effect of captopril in the rat. Kidney Int. 1980 Dec;18(6):746–753. doi: 10.1038/ki.1980.193. [DOI] [PubMed] [Google Scholar]
  21. Reid I. A., Morris B. J., Ganong W. F. The renin-angiotensin system. Annu Rev Physiol. 1978;40:377–410. doi: 10.1146/annurev.ph.40.030178.002113. [DOI] [PubMed] [Google Scholar]
  22. Reid I. A., Schrier R. W., Earley L. E. An effect of extrarenal beta adrenergic stimulation on the release of renin. J Clin Invest. 1972 Jul;51(7):1861–1869. doi: 10.1172/JCI106988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Textor S. C., Brunner H. R., Gavras H. Converting enzyme inhibition during chronic angiotensin II infusion in rats. Evidence against a nonangiotensin mechanism. Hypertension. 1981 Mar-Apr;3(2):269–276. doi: 10.1161/01.hyp.3.2.269. [DOI] [PubMed] [Google Scholar]
  24. Thurston H., Swales J. D. Converting enzyme inhibitor and saralasin infusion in rats. Evidence for an additional vasodepressor property of converting enzyme inhibitor. Circ Res. 1978 May;42(5):588–592. doi: 10.1161/01.res.42.5.588. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES