Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1982 Mar;75(3):539–547. doi: 10.1111/j.1476-5381.1982.tb09171.x

Differential pulse voltammetry in the anaesthetized rat: identification of ascorbic acid, catechol and indoleamine oxidation peaks in the striatum and frontal cortex.

M P Brazell, C A Marsden
PMCID: PMC2071566  PMID: 7066604

Abstract

1 Differential pulse voltammetric scans recorded using graphite paste working electrodes implanted in the striatum and frontal cortex of anaesthetized rats exhibited up to three distinct oxidation peaks at potentials between -0.1 and +0.5 V. 2 The first peak at about +0.12 V was selectively increased by the micro-infusion of ascorbic acid (5 X 10(-6) M) close to the surface of the working electrode implanted in either the striatum or the frontal cortex. 3 The second peak at about +0.22 V was selectively increased by micro-infusing either dopamine or 3,4-dihydroxyphenylacetic acid, (5 X 10(-6) M). 4 The third peak at approximately + 0.35 V was selectively increased in a dose-related manner by the micro-infusion of either 5-hydroxytryptamine, (7.5 X 10(-6) M to 7.5 X 10(-5) M) or 5-hydroxyindole-3-acetic acid, (2.5 X 10(-5) M to 6 X 10(-4) M). 5 The results show that differential pulse voltammetry can be used to obtain qualitative and quantitative information about catechol and indoleamine neurones in vivo.

Full text

PDF
539

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Broch O. J., Marsden C. A. Regional distribution of monoamines in the corpus striatum of the rat. Brain Res. 1972 Mar 24;38(2):425–428. doi: 10.1016/0006-8993(72)90725-1. [DOI] [PubMed] [Google Scholar]
  2. Buda M., Gonon F., Cespuglio R., Jouvet M., Pujol J. F. Mesure voltamétrique in vivo de l'acide ascorbique et du DOPAC dans le striatum du rat et du cobaye. C R Seances Acad Sci D. 1980 Feb 4;290(5):431–434. [PubMed] [Google Scholar]
  3. Cespuglio R., Riou F., Buda M., Faradji H., Gonon F., Jouvet M., PUJOL J. F. Mesure in vivo, par voltamétrie impulsionnele différentielle du 5-HIAA dans le striatum du rat. C R Seances Acad Sci D. 1980 Mar 31;290(13):901–906. [PubMed] [Google Scholar]
  4. ELLIOTT K. A. C., SWANK R. L., HENDERSON N. Effects of anesthetics and convulsants on acetylcholine content of brain. Am J Physiol. 1950 Aug 1;162(2):469–474. doi: 10.1152/ajplegacy.1950.162.2.469. [DOI] [PubMed] [Google Scholar]
  5. Gonon F., Buda M., Cespuglio R., Jouvet M., Pujol J. F. In vivo electrochemical detection of catechols in the neostriatum of anaesthetized rats: dopamine or DOPAC? Nature. 1980 Aug 28;286(5776):902–904. doi: 10.1038/286902a0. [DOI] [PubMed] [Google Scholar]
  6. Gonon F., Cespuglio R., Ponchon J. L., Buda M., Jouvet M., Adams R. N., Pujol J. F. Mesure électrochimique continue de la libération de dopamine réalisée in vivo dans le néostriatum du Rat. C R Acad Sci Hebd Seances Acad Sci D. 1978 Apr 24;286(16):1203–1206. [PubMed] [Google Scholar]
  7. Huff R., Adams R. N., Rutledge C. O. Amphetamine dose-dependent changes of in vivo electrochemical signals in rat caudate. Brain Res. 1979 Sep 14;173(2):369–372. doi: 10.1016/0006-8993(79)90640-1. [DOI] [PubMed] [Google Scholar]
  8. Lindvall O., Björklund A., Divac I. Organization of catecholamine neurons projecting to the frontal cortex in the rat. Brain Res. 1978 Feb 17;142(1):1–24. doi: 10.1016/0006-8993(78)90173-7. [DOI] [PubMed] [Google Scholar]
  9. Lindvall O., Björklund A. The organization of the ascending catecholamine neuron systems in the rat brain as revealed by the glyoxylic acid fluorescence method. Acta Physiol Scand Suppl. 1974;412:1–48. [PubMed] [Google Scholar]
  10. MARLEY E., PATON W. D. The output of sympathetic amines from the cat's adrenal gland in response to splanchnic nerve activity. J Physiol. 1961 Jan;155:1–27. doi: 10.1113/jphysiol.1961.sp006610. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Marsden C. A., Bennett G. W., Brazell M., Sharp T., Stolz J. F. Electrochemical monitoring of 5-hydroxytryptamine release in vitro and related in vivo measurements of indoleamines. J Physiol (Paris) 1981;77(2-3):333–337. [PubMed] [Google Scholar]
  12. Marsden C. A., Conti J., Strope E., Curzon G., Adams R. N. Monitoring 5-hydroxytryptamine release in the brain of the freely moving unanaesthetized rat using in vivo voltammetry. Brain Res. 1979 Jul 27;171(1):85–99. doi: 10.1016/0006-8993(79)90734-0. [DOI] [PubMed] [Google Scholar]
  13. Mitchell J. F. The spontaneous and evoked release of acetylcholine from the cerebral cortex. J Physiol. 1963 Jan;165(1):98–116. doi: 10.1113/jphysiol.1963.sp007045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Nielsen M., Braestrup C. A method for the assay of conjugated 3,4-dihydroxyphenylglycol, a major noradrenaline metabolite in the rat brain. J Neurochem. 1976 Nov;27(5):1211–1217. doi: 10.1111/j.1471-4159.1976.tb00329.x. [DOI] [PubMed] [Google Scholar]
  15. Steinbusch H. W. Distribution of serotonin-immunoreactivity in the central nervous system of the rat-cell bodies and terminals. Neuroscience. 1981;6(4):557–618. doi: 10.1016/0306-4522(81)90146-9. [DOI] [PubMed] [Google Scholar]
  16. Subramanian N. On the brain ascorbic acid and its importance in metabolism of biogenic amines. Life Sci. 1977 May 1;20(9):1479–1484. doi: 10.1016/0024-3205(77)90438-6. [DOI] [PubMed] [Google Scholar]
  17. Szerb J. C. Model experiments with Gaddum's push-pull cannulas. Can J Physiol Pharmacol. 1967 Jul;45(4):613–620. doi: 10.1139/y67-074. [DOI] [PubMed] [Google Scholar]
  18. Wightman R. M., Strope E., Plotsky P. M., Adams R. N. Monitoring of transmitter metabolites by voltammetry in cerebrospinal fluid following neural pathway stimulation. Nature. 1976 Jul 8;262(5564):145–146. doi: 10.1038/262145a0. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES