Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1981 Oct;74(2):371–380. doi: 10.1111/j.1476-5381.1981.tb09981.x

Effects of calcium antagonists on the alternation of the ST-T complex and associated conduction abnormalities during coronary occlusion in dogs.

H Hashimoto, M Nakashima
PMCID: PMC2071737  PMID: 7317686

Abstract

1 The effects of Ca2+ -antagonists on the relationships between alternate changes in the ST-T complex in the epicardial electrogram, ST-T alternans, and associated excitation-conduction abnormalities during coronary occlusion were examined in anaesthetized dogs. 2 Epicardial unipolar electrograms, bipolar electrograms (BPEG) and monophasic action potentials (MAP) were recorded with unipolar, composite and suction electrodes, respectively. 3 ST-T alternans was associated with serious conduction delay. During the period of ST-T alternans, the amplitude of MAP changed alternately and the negative deflection of the ST-T complex was associated with a larger MAP. A depression of the TQ level and decrease in the resting potential of MAP were marked. 4 Verapamil (0.2 mg/kg) and diltiazem (0.5 mg/kg) inhibited ST-T alternans, conduction abnormalities, TQ depression and changes in MAP. However, after these drugs, the TQ depression and the decrease in the resting potential were evident after a longer period of occlusion at a time when ST-T alternans, conduction abnormalities and alternate changes in MAP were still inhibited. Dipyridamole (0.5 mg/kg) had no effect on either ST-T alternans or the conduction abnormalities. 5 Verapamil and diltiazem inhibited ST-T alternans and the associated excitation and conduction abnormalities. The effects of these two drugs cannot be explained on the basis of attenuation of the decrease in the resting potential.

Full text

PDF
371

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Carmeliet E. Cardiac transmembrane potentials and metabolism. Circ Res. 1978 May;42(5):577–587. doi: 10.1161/01.res.42.5.577. [DOI] [PubMed] [Google Scholar]
  2. Downar E., Janse M. J., Durrer D. The effect of "ischemic" blood on transmembrane potentials of normal porcine ventricular myocardium. Circulation. 1977 Mar;55(3):455–462. doi: 10.1161/01.cir.55.3.455. [DOI] [PubMed] [Google Scholar]
  3. Downar E., Janse M. J., Durrer D. The effect of acute coronary artery occlusion on subepicardial transmembrane potentials in the intact porcine heart. Circulation. 1977 Aug;56(2):217–224. doi: 10.1161/01.cir.56.2.217. [DOI] [PubMed] [Google Scholar]
  4. El-Sherif N., Lazzara R. Reentrant ventricular arrhythmias in the late myocardial infarction period. 7. Effect of verapamil and D-600 and the role of the "slow channel". Circulation. 1979 Sep;60(3):605–615. doi: 10.1161/01.cir.60.3.605. [DOI] [PubMed] [Google Scholar]
  5. Elharrar V., Gaum W. E., Zipes D. P. Effect of drugs on conduction delay and incidence of ventricular arrhythmias induced by acute coronary occlusion in dogs. Am J Cardiol. 1977 Apr;39(4):544–549. doi: 10.1016/s0002-9149(77)80164-1. [DOI] [PubMed] [Google Scholar]
  6. Fisch C., Edmands R. E., Greenspan K. T wave alternans: an association with abrupt rate change. Am Heart J. 1971 Jun;81(6):817–821. doi: 10.1016/0002-8703(71)90086-x. [DOI] [PubMed] [Google Scholar]
  7. HELLERSTEIN H. K., LIEBOW I. M. Electrical alternation in experimental coronary artery occlusion. Am J Physiol. 1950 Feb;160(2):366–374. doi: 10.1152/ajplegacy.1950.160.2.366. [DOI] [PubMed] [Google Scholar]
  8. Hill J. L., Gettes L. S. Effect of acute coronary artery occlusion on local myocardial extracellular K+ activity in swine. Circulation. 1980 Apr;61(4):768–778. doi: 10.1161/01.cir.61.4.768. [DOI] [PubMed] [Google Scholar]
  9. Hirata Y., Toyama J., Yamada K. Effects of hypoxia or low PH on the alternation of canine ventricular action potentials following an abrupt increase in driving rate. Cardiovasc Res. 1980 Feb;14(2):108–115. doi: 10.1093/cvr/14.2.108. [DOI] [PubMed] [Google Scholar]
  10. Ishikawa K., Tateno M. Alternans of the repolarization wave in a case of hypochloremic alkalosis with hypopotassemia. J Electrocardiol. 1976;9(1):75–79. doi: 10.1016/s0022-0736(76)80014-3. [DOI] [PubMed] [Google Scholar]
  11. Janse M. J., van Capelle F. J., Morsink H., Kléber A. G., Wilms-Schopman F., Cardinal R., d'Alnoncourt C. N., Durrer D. Flow of "injury" current and patterns of excitation during early ventricular arrhythmias in acute regional myocardial ischemia in isolated porcine and canine hearts. Evidence for two different arrhythmogenic mechanisms. Circ Res. 1980 Aug;47(2):151–165. doi: 10.1161/01.res.47.2.151. [DOI] [PubMed] [Google Scholar]
  12. KIMURA E., YOSHIDA K. A case showing electrical alternans of the T wave without change in the QRS complex. Am Heart J. 1963 Mar;65:391–395. doi: 10.1016/0002-8703(63)90014-0. [DOI] [PubMed] [Google Scholar]
  13. Kleinfeld M. J., Rozanski J. J. Alternans of the ST segment in Prinzmetal's angina. Circulation. 1977 Apr;55(4):574–577. doi: 10.1161/01.cir.55.4.574. [DOI] [PubMed] [Google Scholar]
  14. Kleinfeld M., Stein E. Electrical alternans of compenents of action potential. Am Heart J. 1968 Apr;75(4):528–530. doi: 10.1016/0002-8703(68)90010-0. [DOI] [PubMed] [Google Scholar]
  15. Kléber A. G., Janse M. J., van Capelle F. J., Durrer D. Mechanism and time course of S-T and T-Q segment changes during acute regional myocardial ischemia in the pig heart determined by extracellular and intracellular recordings. Circ Res. 1978 May;42(5):603–613. doi: 10.1161/01.res.42.5.603. [DOI] [PubMed] [Google Scholar]
  16. Lu H. H., Lange G., Brooks C. M. Comparative studies of electrical and mechanical alternation in heart cells. J Electrocardiol. 1968;1(1):7–17. doi: 10.1016/s0022-0736(68)80004-4. [DOI] [PubMed] [Google Scholar]
  17. Moréna H., Janse M. J., Fiolet J. W., Krieger W. J., Crijns H., Durrer D. Comparison of the effects of regional ischemia, hypoxia, hyperkalemia, and acidosis on intracellular and extracellular potentials and metabolism in the isolated porcine heart. Circ Res. 1980 May;46(5):634–646. doi: 10.1161/01.res.46.5.634. [DOI] [PubMed] [Google Scholar]
  18. Nagao T., Matlib M. A., Franklin D., Millard R. W., Schwartz A. Effects of diltiazem, a calcium antagonist, on regional myocardial function and mitochondria after brief coronary occlusion. J Mol Cell Cardiol. 1980 Jan;12(1):29–43. doi: 10.1016/0022-2828(80)90109-1. [DOI] [PubMed] [Google Scholar]
  19. Nagao T., Sato M., Iwasawa Y., Takada T., Ishida R. Studies on a new 1,5-benzothiazepine derivative (CRD-401). 3. Effects of optical isomers of CRD-401 on smooth muscle and other pharmacological properties. Jpn J Pharmacol. 1972 Aug;22(4):467–478. doi: 10.1254/jjp.22.467. [DOI] [PubMed] [Google Scholar]
  20. Nakajima H., Hoshiyama M., Yamashita K., Kiyomoto A. Effect of diltiazem on electrical and mechanical activity of isolated cardiac ventricular muscle of guinea pig. Jpn J Pharmacol. 1975 Aug;25(4):383–392. doi: 10.1254/jjp.25.383. [DOI] [PubMed] [Google Scholar]
  21. Nakashima M., Hashimoto H., Kanamaru M., Nagaya T., Hashizume M., Oishi H. Experimental studies and clinical report on the electrical alternans of ST segment during myocardial ischemia. Jpn Heart J. 1978 May;19(3):396–408. doi: 10.1536/ihj.19.396. [DOI] [PubMed] [Google Scholar]
  22. Navarro-Lopez F., Cinca J., Sanz G., Periz A., Magriña J., Betriu A. Isolated T wave alternans. Am Heart J. 1978 Mar;95(3):369–374. doi: 10.1016/0002-8703(78)90369-1. [DOI] [PubMed] [Google Scholar]
  23. Opie L. H., Nathan D., Lubbe W. F. Biochemical aspects of arrhythmogenesis and ventricular fibrillation. Am J Cardiol. 1979 Jan;43(1):131–148. doi: 10.1016/0002-9149(79)90055-9. [DOI] [PubMed] [Google Scholar]
  24. Ricketts H. H., Denison E. K., Haywood L. J. Unusual T-wave abnormality. Repolarization alternans associated with hypomagnesemia, acute alcoholism, and cardiomyopathy. JAMA. 1969 Jan 13;207(2):365–366. doi: 10.1001/jama.207.2.365. [DOI] [PubMed] [Google Scholar]
  25. Rona G. Experimental aspects of cobalt cardiomyopathy. Br Heart J. 1971;33(Suppl):171–174. doi: 10.1136/hrt.33.suppl.171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Roselle H. A., Crampton R. S., Case R. B. Alternans of the depressed S-T segment during coronary insufficiency. Its relation to mechanical events. Am J Cardiol. 1966 Aug;18(2):200–207. doi: 10.1016/0002-9149(66)90033-6. [DOI] [PubMed] [Google Scholar]
  27. Saikawa T., Nagamoto Y., Arita M. Electrophysiologic effects of diltiazem, a new slow channel inhibitor, on canine cardiac fibers. Jpn Heart J. 1977 Mar;18(2):235–245. doi: 10.1536/ihj.18.235. [DOI] [PubMed] [Google Scholar]
  28. Vogel S., Sperelakis N. Blockade of myocardial slow inward current at low pH. Am J Physiol. 1977 Sep;233(3):C99–103. doi: 10.1152/ajpcell.1977.233.3.C99. [DOI] [PubMed] [Google Scholar]
  29. Weishaar R., Ashikawa K., Bing R. J. Effect of diltiazem, a calcium antagonist, on myocardial ischemia. Am J Cardiol. 1979 Jun;43(6):1137–1143. doi: 10.1016/0002-9149(79)90144-9. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES