Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1981 Nov;74(3):665–672. doi: 10.1111/j.1476-5381.1981.tb10477.x

Correlation between catecholamine release and sodium pump inhibition in the perfused adrenal gland of the cat

AG Garcia, E Garcia-Lopez, C Montiel, GP Nicolas, P Sanchez-Garcia
PMCID: PMC2071741  PMID: 7296167

Abstract

1 Ca2+ reintroduction to retrogradely perfused and ouabain (10-4 M)-treated cat adrenal glands caused a catecholamine secretory response which was greater the longer the time of exposure to the cardiac glycoside. Such a response was proportional to the external Na+ concentration [Na+]o.

2 A qualitatively similar, yet smaller response was observed when glands were perfused with Krebs solution lacking K+ ions; thus, K+ deprivation mimicked the secretory effects of ouabain. Catecholamine secretion evoked by Ca2+ reintroduction in K+-free solution (0-K+) was also proportional to [Na+]o and greater the longer the time of exposure of the gland to 0-K+ solution.

3 The ionophore X537A also mimicked the ouabain effects, since Ca2+ reintroduction to glands treated with this agent (25 μM) caused a sharp secretory response. When added together with X537A, ouabain (10-4 M) did not modify the response to the ionophore.

4 N-ethylmaleimide (NEM), another Na+, K+-ATPase inhibitor, did not evoke the release of catecholamines; on the contrary, NEM (10-4 M) inhibited the catecholamine secretory response to high [K+]o, acetylcholine, Ca2+ reintroduction and ouabain.

5 Ouabain (10-4 M) inhibited the uptake of 86Rb into adreno-medullary tissue by 60%. Maximal inhibition had already occurred 2 min after adding the drug, indicating a lack of temporal correlation between ATPase inhibition and the ouabain secretory response, which took longer (about 30-40 min) to reach its peak. NEM (10-4 M) blocked 86Rb uptake in a similar manner.

6 The results are further evidence in favour of the presence of a Na+-Ca2+ exchange system in the chromaffin cell membrane, probably involved in the control of [Ca2+]i and in the modulation of catecholamine secretion. This system is activated by increasing [Na+]i, either directly (ionophore X537A, increased [Na+]o) or indirectly (Na+ pump inhibition). However, the simple inhibition of Na+ pumping does not always lead to a catecholamine secretory response; such is the case for NEM.

Full text

PDF
665

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akera D. K., Brody T. M., Ku D., Pew C. L. Cardiac glucosides: correlations among Na+ K+-ATPase, sodium pump and contractility in the guinea pig heart. Naunyn Schmiedebergs Arch Pharmacol. 1974;285(2):185–200. doi: 10.1007/BF00501153. [DOI] [PubMed] [Google Scholar]
  2. Akera T., Brody T. M. The role of Na+,K+-ATPase in the inotropic action of digitalis. Pharmacol Rev. 1977 Sep;29(3):187–220. [PubMed] [Google Scholar]
  3. Aunis D., García A. G. Correlation between catecholamine secretion from bovine isolated chromaffin cells and [3H]-ouabain binding to plasma membranes. Br J Pharmacol. 1981 Jan;72(1):31–40. doi: 10.1111/j.1476-5381.1981.tb09101.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Baker P. F., Blaustein M. P., Hodgkin A. L., Steinhardt R. A. The influence of calcium on sodium efflux in squid axons. J Physiol. 1969 Feb;200(2):431–458. doi: 10.1113/jphysiol.1969.sp008702. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Baker P. F. Transport and metabolism of calcium ions in nerve. Prog Biophys Mol Biol. 1972;24:177–223. doi: 10.1016/0079-6107(72)90007-7. [DOI] [PubMed] [Google Scholar]
  6. Banerjee S. P., Wong S. M., Khanna V. K., Sen A. K. Inhibition of sodium- and potassium-dependent adenosine triphosphatase by N-ethylmaleimide. I. Effects on sodium-sensitive phosphorylation and potassium-sensitive dephosphorylation. Mol Pharmacol. 1972 Jan;8(1):8–17. [PubMed] [Google Scholar]
  7. Banks P. The effect of ouabain on the secretion of catecholamines and on the intracellular concentration of potassium. J Physiol. 1967 Dec;193(3):631–637. doi: 10.1113/jphysiol.1967.sp008383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Duncan C. J. The action of ouabain in promoting the release of catecholamines. Experientia. 1977 Jul 15;33(7):923–924. doi: 10.1007/BF01951283. [DOI] [PubMed] [Google Scholar]
  9. Esquerro E., Garcia A. G., Herandez M., Kirpekar S. M., Prat J. C. Catecholamine secretory response to calcium reintroduction in the perfused cat adrenal gland treated with ouabain. Biochem Pharmacol. 1980 Oct 1;29(19):2669–2673. doi: 10.1016/0006-2952(80)90084-2. [DOI] [PubMed] [Google Scholar]
  10. Fleisch J. H., Krzan M. C., Titus E. Pharmacologic receptor activity of rabbit aorta. Effect of dithiothreitol and N-ethylmaleimide. Circ Res. 1973 Sep;33(3):284–290. doi: 10.1161/01.res.33.3.284. [DOI] [PubMed] [Google Scholar]
  11. Fricke U. Myocardial activity of inhibitors of the Na+ -K+ -ATPase: differences in the mode of action and subcellular distribution pattern of N-ethylmaleimide and ouabain. Naunyn Schmiedebergs Arch Pharmacol. 1978 Jul;303(3):197–204. doi: 10.1007/BF00498044. [DOI] [PubMed] [Google Scholar]
  12. Garcia A. G., Garcia-Lopez E., Horga J. F., Kirpekar S. M., Montiel C., Sanchez-Garcia P. Potentiation of K+-evoked catecholamine release in the cat adrenal gland treated with ouabain. Br J Pharmacol. 1981 Nov;74(3):673–680. doi: 10.1111/j.1476-5381.1981.tb10478.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Garcia A. G., Hernandez M., Horga J. F., Sanchez-Garcia P. On the release of catecholamines and dopamine-beta-hydroxylase evoked by ouabain in the perfused cat adrenal gland. Br J Pharmacol. 1980 Mar;68(3):571–583. doi: 10.1111/j.1476-5381.1980.tb14573.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Garcia A. G., Kirpekar S. M. Letter: Inhibition of Na, K-activated ATPase and release of neurotransmitters. Nature. 1975 Oct 23;257(5528):722–722. doi: 10.1038/257722b0. [DOI] [PubMed] [Google Scholar]
  15. Garcia A. G., Kirpekar S. M. On the mechanism of release of norepinephrine from cat spleen slices by sodium deprivation and calcium pretreatment. J Pharmacol Exp Ther. 1975 Feb;192(2):343–350. [PubMed] [Google Scholar]
  16. Garcia A. G., Kirpekar S. M. Release of noradrenaline from slices of cat spleen by pre-treatment with calcium, strontium and barium. J Physiol. 1973 Dec;235(3):693–713. doi: 10.1113/jphysiol.1973.sp010411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Garcia A. G., Kirpekar S. M. Release of noradrenaline from the cat spleen by sodium deprivation. Br J Pharmacol. 1973 Apr;47(4):729–747. doi: 10.1111/j.1476-5381.1973.tb08200.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kirpekar S. M., Prat J. C., Yamamoto H. Effects of metabolic inhibitors on norepinephrine release from the perfused spleen of the cat. J Pharmacol Exp Ther. 1970 Apr;172(2):342–350. [PubMed] [Google Scholar]
  19. Lee K. S., Klaus W. The subcellular basis for the mechanism of inotropic action of cardiac glycosides. Pharmacol Rev. 1971 Sep;23(3):193–261. [PubMed] [Google Scholar]
  20. Lindmar R., Löffelholz K. The neuronal efflux of noradrenaline: dependency on sodium and facilitation by ouabain. Naunyn Schmiedebergs Arch Pharmacol. 1974;284(1):93–100. doi: 10.1007/BF00499974. [DOI] [PubMed] [Google Scholar]
  21. Nakazato Y., Ohga A., Onoda Y. The effect of ouabain on noradrenaline output from peripheral adrenergic neurones of isolated guinea-pig vas deferens. J Physiol. 1978 May;278:45–54. doi: 10.1113/jphysiol.1978.sp012291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Pascual R., Horga J. F., Sánchez-García P., García A. G. Release of noradrenaline by the ionophore X537A from normal and reserpinized guinea-pig atrium. Naunyn Schmiedebergs Arch Pharmacol. 1977 Dec;301(1):57–64. doi: 10.1007/BF00501264. [DOI] [PubMed] [Google Scholar]
  23. SKOU J. C. Studies on the Na ion and K ion activated ATP hydrolysing enzyme system. The role of SH groups. Biochem Biophys Res Commun. 1963 Jan 18;10:79–84. doi: 10.1016/0006-291x(63)90272-9. [DOI] [PubMed] [Google Scholar]
  24. SKOU J. C. The influence of some cations on an adenosine triphosphatase from peripheral nerves. Biochim Biophys Acta. 1957 Feb;23(2):394–401. doi: 10.1016/0006-3002(57)90343-8. [DOI] [PubMed] [Google Scholar]
  25. Schadt M., Haeusler G. Permeability of lipid bilayer membranes to biogenic amines and cations: changes induced by ionophores and correlations with biological activities. J Membr Biol. 1974;18(3-4):277–294. doi: 10.1007/BF01870117. [DOI] [PubMed] [Google Scholar]
  26. Schwartz A. Is the cell membrane Na+, K+ -ATPase enzyme system the pharmacological receptor for digitalis? Circ Res. 1976 Jul;39(1):1–7. doi: 10.1161/01.res.39.1.1. [DOI] [PubMed] [Google Scholar]
  27. Shellenberger M. K., Gordon J. H. A rapid, simplified procedure for simultaneous assay of norepinephrine, dopamine, and 5-hydroxytryptamine from discrete brain areas. Anal Biochem. 1971 Feb;39(2):356–372. doi: 10.1016/0003-2697(71)90426-x. [DOI] [PubMed] [Google Scholar]
  28. Sutko J. L., Besch H. R., Jr, Bailey J. C., Zimmerman G., Watanabe A. M. Direct effects of the monovalent cation ionophores monensin and nigericin on myocardium. J Pharmacol Exp Ther. 1977 Dec;203(3):685–700. [PubMed] [Google Scholar]
  29. Yamamoto S., Akera T., Brody T. M. Prednisolone-3, 20-bisguanylhydrazone: Na+, K+-ATPase inhibition and positive inotropic action. Eur J Pharmacol. 1978 May 15;49(2):121–132. doi: 10.1016/0014-2999(78)90068-7. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES