Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1981 Nov;74(3):681–694. doi: 10.1111/j.1476-5381.1981.tb10479.x

Contractile effect of morphine and related opioid alkaloids, β-endorphin and methionine enkephalin on the isolated colon from Long Evans rats

J Pablo Huidobro-Toro, E Leong Way
PMCID: PMC2071747  PMID: 6170377

Abstract

1 Morphine and related synthetic surrogates as well as β-endorphin and methionine enkephalin caused a contractile response of the longitudinal musculature of the terminal colon of Long Evans rats.

2 The muscular contraction caused by the narcotic analgesics exhibited stereospecificity, with levorphanol being about 50 times more potent than dextrorphan and (-)-methadone 4 times more potent than (+)-methadone. In addition, the rank order in potency of a homologous series of N-alkyl substituted norketobemidones demonstrated that the activity of these compounds in eliciting contractile responses corresponded to that for analgesic efficacy in the rat and also correlated to the ability of these derivatives to inhibit the muscular twitch evoked by electrical stimulation of the guinea-pig ileum.

3 Naloxone blocked the contractile response of the opiates following competitive kinetics; the naloxone pA2 values for morphine, etorphine, levorphanol and methadone were very close, in spite of the marked differences in potency of these agents.

4 The contractile effect of morphine on the rat colon was abolished by incubation of the tissues with tetrodotoxin 2.0 × 10-7 M or by decreasing the external Ca2+ level 100 fold. Increasing the external Ca2+ concentration caused an apparent non-competitive antagonism of the response to morphine.

5 Pretreatment of the tissues with hexamethonium 8.3 × 10-5 M caused a modest antagonism of the morphine effect while atropine 5.8 × 10-7 M did not significantly modify the morphine contractile effect. In contrast, methysergide 10-5 M caused a 10 fold increase in the morphine EC50.

6 Colons from rats rendered tolerant-dependent on morphine were markedly less sensitive to the contractile effects of morphine than those from placebo-treated controls. Tolerance to morphine was also accompanied by an increased sensitivity to the contractile effects of 5-hydroxytryptamine (5-HT).

7 A marked increase in the spontaneous muscular activity of segments of the terminal colon of rats chronically treated with morphine was found to occur upon removal of the residual morphine in the tissues by repetitive washings. The spontaneous activity was arrested by applications of morphine, suggesting that physical dependence can be demonstrated in vitro in this particular preparation.

8 It is concluded that the opiate-induced contractile response is mediated via stereospecific, naloxone-sensitive, opiate receptors and that the muscular response involves the activation of a 5-HT neurone in the nerve terminals of the colon.

Full text

PDF
681

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ARUNLAKSHANA O., SCHILD H. O. Some quantitative uses of drug antagonists. Br J Pharmacol Chemother. 1959 Mar;14(1):48–58. doi: 10.1111/j.1476-5381.1959.tb00928.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Burks T. F. Acute effects of morphine on rat intestinal motility. Eur J Pharmacol. 1976 Dec;40(2):279–283. doi: 10.1016/0014-2999(76)90063-7. [DOI] [PubMed] [Google Scholar]
  3. Burks T. F., Long J. P. Release of intestinal 5-hydroxytryptamine by morphine and related agents. J Pharmacol Exp Ther. 1967 May;156(2):267–276. [PubMed] [Google Scholar]
  4. Burks T. F. Mediation by 5-hydroxytryptamine of morphine stimulant actions in dog intestine. J Pharmacol Exp Ther. 1973 Jun;185(3):530–539. [PubMed] [Google Scholar]
  5. Creese I., Snyder S. H. Receptor binding and pharmacological activity of opiates in the guinea-pig intestine. J Pharmacol Exp Ther. 1975 Jul;194(1):205–219. [PubMed] [Google Scholar]
  6. Elde R., Hökfelt T., Johansson O., Terenius L. Immunohistochemical studies using antibodies to leucine-enkephalin: initial observations on the nervous system of the rat. Neuroscience. 1976 Aug;1(4):349–351. doi: 10.1016/0306-4522(76)90063-4. [DOI] [PubMed] [Google Scholar]
  7. Fennessy M. R., Heimans R. L., Rand M. J. Comparison of effect of morphine-like analgesics on transmurally stimulated guinea-pig ileum. Br J Pharmacol. 1969 Oct;37(2):436–449. doi: 10.1111/j.1476-5381.1969.tb10580.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Furness J. B., Costa M., Franco R., Llewellyn-Smith I. J. Neuronal peptides in the intestine: distribution and possible functions. Adv Biochem Psychopharmacol. 1980;22:601–617. [PubMed] [Google Scholar]
  9. Furness J. B., Costa M. Types of nerves in the enteric nervous system. Neuroscience. 1980;5(1):1–20. doi: 10.1016/0306-4522(80)90067-6. [DOI] [PubMed] [Google Scholar]
  10. Gershon M. D. Effects of tetrodotoxin on innervated smooth muscle preparations. Br J Pharmacol Chemother. 1967 Mar;29(3):259–279. doi: 10.1111/j.1476-5381.1967.tb01958.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gillan M. G., Pollock D. Acute effects of morphine and opioid peptides on the motility and responses of rat colon to electrical stimulation. Br J Pharmacol. 1980 Mar;68(3):381–392. doi: 10.1111/j.1476-5381.1980.tb14551.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gillan M. G., Pollock D. Investigation of the effects of drugs on morphine-induced contractions of the isolated colon of the rat [proceedings]. Br J Pharmacol. 1976 Jul;57(3):444P–445P. [PMC free article] [PubMed] [Google Scholar]
  13. Goldstein A., Schulz R. Morphine-tolerant longitudinal muscle strip from guinea-pig ileum. Br J Pharmacol. 1973 Aug;48(4):655–666. doi: 10.1111/j.1476-5381.1973.tb08254.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Grubb M. N., Burks T. F. Selective antagonism of the intesinal stimulatory effects of morphine by isoproterenol prostalglandin E1 and theophylline. J Pharmacol Exp Ther. 1975 Jun;193(3):883–891. [PubMed] [Google Scholar]
  15. Harris R. A., Loh H. H., Way E. L. Alterations in the efficacy of naloxone induced by stress, cyclic adenosine monophosphate, and morphine tolerance. Eur J Pharmacol. 1976 Sep;39(1):1–10. doi: 10.1016/0014-2999(76)90107-2. [DOI] [PubMed] [Google Scholar]
  16. Harris R. A., Loh H. H., Way E. L. Antinociceptive effects of lanthanum and cerium in nontolerant and morphine tolerant-dependent animals. J Pharmacol Exp Ther. 1976 Feb;196(2):288–297. [PubMed] [Google Scholar]
  17. Harris R. A., Loh H. H., Way E. L. Effects of divalent cations, cation chelators and an ionophore on morphine analgesia and tolerance. J Pharmacol Exp Ther. 1975 Dec;195(3):488–498. [PubMed] [Google Scholar]
  18. Heimans R. L. Effects of some cholinergic drugs on the actions of morphine on the ileum of the guinea-pig in vitro. Arch Int Pharmacodyn Ther. 1975 May;215(1):13–19. [PubMed] [Google Scholar]
  19. Hubbard J. I. Microphysiology of vertebrate neuromuscular transmission. Physiol Rev. 1973 Jul;53(3):674–723. doi: 10.1152/physrev.1973.53.3.674. [DOI] [PubMed] [Google Scholar]
  20. Hughes J., Kosterlitz H. W., Smith T. W. The distribution of methionine-enkephalin and leucine-enkephalin in the brain and peripheral tissues. Br J Pharmacol. 1977 Dec;61(4):639–647. doi: 10.1111/j.1476-5381.1977.tb07557.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hughes J., Smith T. W., Kosterlitz H. W., Fothergill L. A., Morgan B. A., Morris H. R. Identification of two related pentapeptides from the brain with potent opiate agonist activity. Nature. 1975 Dec 18;258(5536):577–580. doi: 10.1038/258577a0. [DOI] [PubMed] [Google Scholar]
  22. Huidobro-Toro J. P., Foree B., Way E. L. Single dose tolerance and cross tolerance studies with the endorphins in isolated guinea pig ileum. Proc West Pharmacol Soc. 1978;21:381–386. [PubMed] [Google Scholar]
  23. Huidobro-Toro J. P., Harris R. A., Loh H. H., Way E. L. Effects of hypothyroidism on the response of the rat colon to morphine. Eur J Pharmacol. 1978 Nov 15;52(2):191–195. doi: 10.1016/0014-2999(78)90205-4. [DOI] [PubMed] [Google Scholar]
  24. Huidobro-Toro J. P., Hu J., Way E. L. Calcium antagonism of the inhibitory effect of normorphine on the ileum of the morphine-tolerant and nontolerant guinea pig. J Pharmacol Exp Ther. 1981 Jul;218(1):84–91. [PubMed] [Google Scholar]
  25. Huidobro-Toro J. P., Way E. L. Comparative study on the effect of morphine and the opioid-like peptides in the vas deferens of rodents: species and strain differences, evidence for multiple opiate receptors. Life Sci. 1981 Mar 23;28(12):1331–1336. doi: 10.1016/0024-3205(81)90405-7. [DOI] [PubMed] [Google Scholar]
  26. Huidobro-Toro J. P., Way E. L. The effect of narcotic agonists and antagonists on the rat colon. Proc West Pharmacol Soc. 1976;19:278–281. [PubMed] [Google Scholar]
  27. Huidobro F., Huidobro-Toro J. P., Miranda H. Interactions between morphine and the opioid-like peptides in the rat vas deferens. Br J Pharmacol. 1980 Dec;70(4):519–525. doi: 10.1111/j.1476-5381.1980.tb09770.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. KAYMAKCALAN S., TEMELLI S. RESPONSE OF THE ISOLATED INTESTINE OF NORMAL AND MORPHINE-TOLERANT RATS TO MORPHINE AND NALORPHINE. Arch Int Pharmacodyn Ther. 1964 Sep 1;151:136–141. [PubMed] [Google Scholar]
  29. Kakunaga T., Kaneto H., Hano K. Pharmacologic studies on analgesics. VII. Significance of the calcium ion in morphine analgesia. J Pharmacol Exp Ther. 1966 Jul;153(1):134–141. [PubMed] [Google Scholar]
  30. Kao C. Y. Tetrodotoxin, saxitoxin and their significance in the study of excitation phenomena. Pharmacol Rev. 1966 Jun;18(2):997–1049. [PubMed] [Google Scholar]
  31. Kosterlitz H. W., Leslie F. M., Waterfield A. A. Narcotic agonist and antagonist potencies of a homologous series of N-alkyl-norketobemidones measured by the guinea-pig ileum and mouse vas deferens methods. J Pharm Pharmacol. 1975 Feb;27(2):73–78. doi: 10.1111/j.2042-7158.1975.tb09412.x. [DOI] [PubMed] [Google Scholar]
  32. Kosterlitz H. W., Waterfield A. A. In vitro models in the study of structure-activity relationships of narcotic analgesics. Annu Rev Pharmacol. 1975;15:29–47. doi: 10.1146/annurev.pa.15.040175.000333. [DOI] [PubMed] [Google Scholar]
  33. Kosterlitz H. W., Watt A. J. Kinetic parameters of narcotic agonists and antagonists, with particular reference to N-allylnoroxymorphone (naloxone). Br J Pharmacol Chemother. 1968 Jun;33(2):266–276. doi: 10.1111/j.1476-5381.1968.tb00988.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Loh H. H., Cho T. M., Wu Y. C., Harris R. A., Way E. L. Opiate binding to cerebroside sulfate: a model system for opiate-receptor interaction. Life Sci. 1975 Jun 15;16(12):1811–1817. doi: 10.1016/0024-3205(75)90281-7. [DOI] [PubMed] [Google Scholar]
  35. Lord J. A., Waterfield A. A., Hughes J., Kosterlitz H. W. Endogenous opioid peptides: multiple agonists and receptors. Nature. 1977 Jun 9;267(5611):495–499. doi: 10.1038/267495a0. [DOI] [PubMed] [Google Scholar]
  36. Ogura Y., Mori Y., Watanabe Y. Inhibition of the release of acetylcholine from isolated guinea-pig ileum by crystalline tetrodotoxin. J Pharmacol Exp Ther. 1966 Dec;154(3):456–462. [PubMed] [Google Scholar]
  37. Opmeer F. A., Van Ree J. M. Competitive antagonism of morphine action in vitro by calcium. Eur J Pharmacol. 1979 Feb 1;53(4):395–397. doi: 10.1016/0014-2999(79)90467-9. [DOI] [PubMed] [Google Scholar]
  38. PATON W. D. The action of morphine and related substances on contraction and on acetylcholine output of coaxially stimulated guinea-pig ileum. Br J Pharmacol Chemother. 1957 Mar;12(1):119–127. doi: 10.1111/j.1476-5381.1957.tb01373.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Parolaro D., Sala M., Gori E. Effect of intracerebroventricular administration of morphine upon intestinal motility in rat and its antagonism with naloxone. Eur J Pharmacol. 1977 Dec 15;46(4):329–338. doi: 10.1016/0014-2999(77)90227-8. [DOI] [PubMed] [Google Scholar]
  40. Pert C. B., Snyder S. H. Opiate receptor: demonstration in nervous tissue. Science. 1973 Mar 9;179(4077):1011–1014. doi: 10.1126/science.179.4077.1011. [DOI] [PubMed] [Google Scholar]
  41. Polak J. M., Bloom S. R., Sullivan S. N., Facer P., Pearse A. G. Enkephalin-like immunoreactivity in the human gastrointestinal tract. Lancet. 1977 May 7;1(8019):972–974. doi: 10.1016/s0140-6736(77)92277-2. [DOI] [PubMed] [Google Scholar]
  42. Pruitt D. B., Grubb M. N., Jaquette D. L., Burks T. F. Intestinal effects of 5-hydroxytryptamine and morphine in guinea pigs, dogs, cats and monkeys. Eur J Pharmacol. 1974 May;26(2):298–305. doi: 10.1016/0014-2999(74)90240-4. [DOI] [PubMed] [Google Scholar]
  43. SCHAUMANN W. Inhibition by morphine of the release of acetylcholine from the intestine of the guinea-pig. Br J Pharmacol Chemother. 1957 Mar;12(1):115–118. doi: 10.1111/j.1476-5381.1957.tb01372.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Smits S. E., Takemori A. E. Quantitative studies on the antagonism by naloxone of some narcotic and narcotic-antagonist analgesics. Br J Pharmacol. 1970 Jul;39(3):627–638. doi: 10.1111/j.1476-5381.1970.tb10370.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Stewart J. J., Weisbrodt N. W., Burks T. F. Central and peripheral actions of morphine on intestinal transit. J Pharmacol Exp Ther. 1978 Jun;205(3):547–555. [PubMed] [Google Scholar]
  46. Stewart J. J., Weisbrodt N. W., Burks T. F. Centrally mediated intestinal stimulation by morphine. J Pharmacol Exp Ther. 1977 Jul;202(1):174–181. [PubMed] [Google Scholar]
  47. Takagi K., Takayanagi I., Irikura T., Nishino K., Ichinoseki N., Shishido K. Responses of the isolated ileum of the morphine-tolerant guinea pig. Arch Int Pharmacodyn Ther. 1965 Nov;158(1):39–44. [PubMed] [Google Scholar]
  48. Takemori A. E., Kupferberg H. J., Miller J. W. Quantitative studies of the antagonism of morphine by nalorphine and naloxone. J Pharmacol Exp Ther. 1969 Sep;169(1):39–45. [PubMed] [Google Scholar]
  49. Tokuro O., May E. L. N-alkylnorketobemidones with strong agonist and weak antagonist properties. J Med Chem. 1973 Dec;16(12):1376–1378. doi: 10.1021/jm00270a012. [DOI] [PubMed] [Google Scholar]
  50. Vaught J. L., Takemori A. E. Characterization of leucine and methionine enkephalin and their interaction with morphine on the guinea pig ileal longitudinal muscle. Res Commun Chem Pathol Pharmacol. 1978 Sep;21(3):391–407. [PubMed] [Google Scholar]
  51. Waterfield A. A., Smokcum R. W., Hughes J., Kosterlitz H. W., Henderson G. In vitro pharmacology of the opioid peptides, enkephalins and endorphins. Eur J Pharmacol. 1977 May 15;43(2):107–116. doi: 10.1016/0014-2999(77)90123-6. [DOI] [PubMed] [Google Scholar]
  52. Way E. L., Loh H. H., Shen F. H. Simultaneous quantitative assessment of morphine tolerance and physical dependence. J Pharmacol Exp Ther. 1969 May;167(1):1–8. [PubMed] [Google Scholar]
  53. Weisbrodt N. W., Badial-Aceves F., Dudrick S. J., Burks T. F., Castro G. A. Tolerance to the effect of morphine on intestinal transit. Proc Soc Exp Biol Med. 1977 Apr;154(4):587–590. doi: 10.3181/00379727-154-39724. [DOI] [PubMed] [Google Scholar]
  54. Wilson R. S., Rogers M. E., Pert C. B., Snyder S. H. Homologous N-alkylnorketobemidones. Correlation of receptor binding with analgesic potency. J Med Chem. 1975 Mar;18(3):240–242. doi: 10.1021/jm00237a003. [DOI] [PubMed] [Google Scholar]
  55. Wüster M., Schulz R., Herz A. Specificity of opioids towards the mu-, delta- and epsilon-opiate receptors. Neurosci Lett. 1979 Dec;15(2-3):193–198. doi: 10.1016/0304-3940(79)96112-3. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES