Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1982 Jun;76(2):265–270. doi: 10.1111/j.1476-5381.1982.tb09216.x

beta-Adrenoceptor agonists enhance 5-hydroxytryptamine-mediated behavioural responses.

P J Cowen, D G Grahame-Smith, A R Green, D J Heal
PMCID: PMC2071791  PMID: 6124294

Abstract

The beta-adrenoceptor agonists, salbutamol, terbutaline and clenbuterol, were investigated for their effect on 5-hydroxytryptamine-mediated (5-HT) hyperactivity. 2 The lipophilic beta-adrenoceptor agonist, clenbuterol (5 mg/kg) enhanced the behaviours induced by quipazine (25 mg/kg), including headweaving, forepaw treading and hind-limb abduction and thus increased automated activity recording. Clenbuterol (5 mg/kg) also enhanced the hyperactivity syndrome produced by the 5-HT agonist, 5-methoxy N,N-dimethyltryptamine (2 mg/kg) and the combination of tranylcypromine (10 mg/kg) and L-tryptophan (50 mg/kg). Salbutamol and terbutaline potentiated quipazine-induced hyperactivity only when given at the higher dose of 20 mg/kg. 3 The effect of clenbuterol in enhancing quipazine hyperactivity was blocked by the centrally acting beta 1-adrenoceptor antagonist, metoprolol (5 mg/kg), but not by the beta 2-adrenoceptor antagonist, butoxamine (5 mg/kg) or the peripherally acting beta 1-adrenoceptor antagonist, atenolol (5 mg/kg). 4 Clenbuterol (5 mg/kg) did not enhance the circling responses produced by methamphetamine (0.5 mg/kg) in unilateral nigrostriatal-lesioned rats. 5 The results suggest that beta-adrenoceptor agonists in common with some established antidepressant treatments produce enhancement of 5-HT-mediated behavioural responses.

Full text

PDF
265

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bodin N. O., Hansson E., Ramsay C. H., Ryrfeldt A. The tissue distribution of 3 H-terbutaline (Bricanyl) in mice. Acta Physiol Scand. 1972 Jan;84(1):40–47. doi: 10.1111/j.1748-1716.1972.tb05154.x. [DOI] [PubMed] [Google Scholar]
  2. Costain D. W., Green A. R., Grahame-Smith D. G. Enhanced 5-hydroxytryptamine-mediated behavioural responses in rats following repeated electroconvulsive shock: relevance to the mechanism of the antidepressive effect of electroconvulsive therapy. Psychopharmacology (Berl) 1979 Mar 22;61(2):167–170. doi: 10.1007/BF00426732. [DOI] [PubMed] [Google Scholar]
  3. Costain D. W., Green A. R. beta-Adrenoceptor antagonists inhibit the behavioural responses of rats to increased brain 5-hydroxytryptamine. Br J Pharmacol. 1978 Oct;64(2):193–200. doi: 10.1111/j.1476-5381.1978.tb17289.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. De Montigny C. Enhancement of the 5-HT neurotransmission by antidepressant treatments. J Physiol (Paris) 1981;77(2-3):455–461. [PubMed] [Google Scholar]
  5. Deakin J. F., Dashwood M. R. The differential neurochemical bases of the behaviours elicited by serotonergic agents and by the combination of a monoamine oxidase inhibitor and L-DOPA. Neuropharmacology. 1981 Feb;20(2):123–130. doi: 10.1016/0028-3908(81)90194-5. [DOI] [PubMed] [Google Scholar]
  6. Deakin J. F., Green A. R. The effects of putative 5-hydroxytryptamine antagonists on the behaviour produced by administration of tranylcypromine and L-tryptophan or tranylcypromine and L-DOPA to rats. Br J Pharmacol. 1978 Oct;64(2):201–209. doi: 10.1111/j.1476-5381.1978.tb17290.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Direct evidence for an interaction of beta-adrenergic blockers with the 5-HT receptor. Nature. 1977 May 19;267(5608):289–290. doi: 10.1038/267289a0. [DOI] [PubMed] [Google Scholar]
  8. Engelhardt G. Pharmakologisches Wirkungsprofil von NAB 365 (Clenbuterol), einem neuen Broncholytikum mit einer selektiven Wirkung auf die adrenergen beta2-rezeptoren. Arzneimittelforschung. 1976;26(7A):1404–1420. [PubMed] [Google Scholar]
  9. Evans J. P., Grahame-Smith D. G., Green A. R., Tordoff A. F. Electroconvulsive shock increases the behavioural responses of rats to brain 5-hydroxytryptamine accumulation and central nervous system stimulant drugs. Br J Pharmacol. 1976 Feb;56(2):193–199. doi: 10.1111/j.1476-5381.1976.tb07442.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Friedman E., Dallob A. Enhanced serotonin receptor activity after chronic treatment with imipramine or amitriptyline. Commun Psychopharmacol. 1979;3(2):89–92. [PubMed] [Google Scholar]
  11. Grahame-Smith D. G. Inhibitory effect of chlorpromazine on the syndrome of hyperactivity produced by L-tryptophan or 5-methoxy-N,N-dimethyltryptamine in rats treated with a monoamine oxidase inhibitor. Br J Pharmacol. 1971 Dec;43(4):856–864. doi: 10.1111/j.1476-5381.1971.tb07222.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Grahame-Smith D. G. Studies in vivo on the relationship between brain tryptophan, brain 5-HT synthesis and hyperactivity in rats treated with a monoamine oxidase inhibitor and L-tryptophan. J Neurochem. 1971 Jun;18(6):1053–1066. doi: 10.1111/j.1471-4159.1971.tb12034.x. [DOI] [PubMed] [Google Scholar]
  13. Green A. R., Hall J. E., Rees A. R. A behavioural and biochemical study in rats of 5-hydroxytryptamine receptor agonists and antagonists, with observations on structure-activity requirements for the agonists. Br J Pharmacol. 1981 Jul;73(3):703–719. doi: 10.1111/j.1476-5381.1981.tb16806.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Green A. R., Youdim M. B., Grahame-Smith D. G. Quipazine: its effects on rat brain 5-hydroxytryptamine metabolism, monoamine oxidase activity and behaviour. Neuropharmacology. 1976 Mar;15(3):173–179. doi: 10.1016/0028-3908(76)90026-5. [DOI] [PubMed] [Google Scholar]
  15. Heal D. J., Green A. R., Buylaert W. A. Inhibition of apomorphine-, bromocriptine- and lergotrile-induced circling behaviour in rats by subsequent haloperidol administration. Neuropharmacology. 1980 Jan;19(1):133–137. doi: 10.1016/0028-3908(80)90179-3. [DOI] [PubMed] [Google Scholar]
  16. Jacobs B. L. Evidence for the functional interaction of two central neurotransmitters. Psychopharmacologia. 1974;39(1):81–86. doi: 10.1007/BF00421461. [DOI] [PubMed] [Google Scholar]
  17. Kopitar Z., Zimmer A. Pharmakokinetik und Metabolitenmuster von Clenbuterol bei der Ratte. Arzneimittelforschung. 1976;26(7A):1435–1441. [PubMed] [Google Scholar]
  18. Lecrubier Y., Puech A. J., Jouvent R., Simon P., Widlocher D. A beta adrenergic stimulant (salbutamol) versus clomipramine in depression: a controlled study. Br J Psychiatry. 1980 Apr;136:354–358. doi: 10.1192/bjp.136.4.354. [DOI] [PubMed] [Google Scholar]
  19. Lerer B., Ebstein R. P., Belmaker R. H. Subsensitivity of human beta-adrenergic adenylate cyclase after salbutamol treatment of depression. Psychopharmacology (Berl) 1981;75(2):169–172. doi: 10.1007/BF00432181. [DOI] [PubMed] [Google Scholar]
  20. Martin L. E., Hobson J. C., Page J. A., Harrison C. Metabolic studies of Salbutanol-3H: a new bronchodilator, in rat, rabbit, dog and man. Eur J Pharmacol. 1971 Apr;14(2):183–199. doi: 10.1016/0014-2999(71)90211-1. [DOI] [PubMed] [Google Scholar]
  21. Ortmann R., Martin S., Radeke E., Delini-Stula A. Interaction of beta-adrenoceptor agonists with the serotonergic system in rat brain. A behavioral study using the L-5-HTP syndrome. Naunyn Schmiedebergs Arch Pharmacol. 1981 Jun;316(3):225–230. doi: 10.1007/BF00505653. [DOI] [PubMed] [Google Scholar]
  22. Ungerstedt U. Postsynaptic supersensitivity after 6-hydroxy-dopamine induced degeneration of the nigro-striatal dopamine system. Acta Physiol Scand Suppl. 1971;367:69–93. doi: 10.1111/j.1365-201x.1971.tb11000.x. [DOI] [PubMed] [Google Scholar]
  23. Waldmeier P. C. Stimulation of central serotonin turnover by beta-adrenoceptor agonists. Naunyn Schmiedebergs Arch Pharmacol. 1981 Sep;317(2):115–119. doi: 10.1007/BF00500065. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES