Abstract
1 A number of aromatic-N-propargyl (acetylenic) compounds and indoleamines were tested for their inhibitory action on monoamine oxidase (MAO) type A and type B using the substrates 5-hydroxytryptamine (5-HT), beta-phenylethylamine (PEA) and dopamine. 2 Structure activity studies with aromatic-N-propragyl (acetylenic) derivatives have shown that MAO inhibitory potency is least dependent on the aromatic portion of the compounds. N-methylated propargyl derivatives are the most active and replacement of the methyl group with a higher alkyl or aromatic group results in significant reduction of activity. The triple bond in the N-propargyl portion is absolutely essential for activity and must be beta-to the nitrogen. It is the acetylenic group that gives these compounds their irreversible MAO inhibitory property. 3 The present study has indicated that since the acetylenic compounds resemble the enzyme substrates the distance between the aromatic ring and the N-propargyl terminal is crucial in designating the type A or type B MAO inhibitory property. For MAO type A inhibition, a distance equivalent to at least three carbon units is required, while for the inhibition of the B type enzyme this distance can be 1 or 2 carbon units. 4 The compounds AGN-1133 and AGN-1135 show most promise in Parkinson's disease or as anti-depressants because of their irreversible selective type B MAO inhibition in vitro and in vivo. 5 A number of indoleamine derivatives were found to be reversible selective type A inhibitors.
Full text
PDF









Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Birkmayer W., Riederer P., Ambrozi L., Youdim M. B. Implications of combined treatment with 'Madopar' and L-deprenil in Parkinson's disease. A long-term study. Lancet. 1977 Feb 26;1(8009):439–443. doi: 10.1016/s0140-6736(77)91940-7. [DOI] [PubMed] [Google Scholar]
- Birkmayer W., Riederer P., Youdim M. B., Linauer W. The potentiation of the anti akinetic effect after L-dopa treatment by an inhibitor of MAO-B, Deprenil. J Neural Transm. 1975;36(3-4):303–326. doi: 10.1007/BF01253131. [DOI] [PubMed] [Google Scholar]
- Elsworth J. D., Glover V., Reynolds G. P., Sandler M., Lees A. J., Phuapradit P., Shaw K. M., Stern G. M., Kumar P. Deprenyl administration in man: a selective monoamine oxidase B inhibitor without the 'cheese effect'. Psychopharmacology (Berl) 1978 Apr 14;57(1):33–38. doi: 10.1007/BF00426954. [DOI] [PubMed] [Google Scholar]
- Finberg J. P., Tenne M., Youdim M. B. Tyramine antagonistic properties of AGN 1135, an irreversible inhibitor of monoamine oxidase type B. Br J Pharmacol. 1981 May;73(1):65–74. doi: 10.1111/j.1476-5381.1981.tb16772.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Glover V., Sandler M., Owen F., Riley G. J. Dopamine is a monoamine oxidase B substrate in man. Nature. 1977 Jan 6;265(5589):80–81. doi: 10.1038/265080a0. [DOI] [PubMed] [Google Scholar]
- Green A. R., Youdim M. B. Effects of monoamine oxidase inhibition by clorgyline, deprenil or tranylcypromine on 5-hydroxytryptamine concentrations in rat brain and hyperactivity following subsequent tryptophan administration. Br J Pharmacol. 1975 Nov;55(3):415–422. doi: 10.1111/j.1476-5381.1975.tb06946.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HAWKINS J. The localization of amine oxidase in the liver cell. Biochem J. 1952 Mar;50(5):577–581. doi: 10.1042/bj0500577. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Houslay M. D., Tipton K. F. A kinetic evaluation of monoamine oxidase activity in rat liver mitochondrial outer membranes. Biochem J. 1974 Jun;139(3):645–652. doi: 10.1042/bj1390645. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johnston J. P. Some observations upon a new inhibitor of monoamine oxidase in brain tissue. Biochem Pharmacol. 1968 Jul;17(7):1285–1297. doi: 10.1016/0006-2952(68)90066-x. [DOI] [PubMed] [Google Scholar]
- KALIR A., SZARA S. SYNTHESIS AND PHARMACOLOGICAL ACTIVITY OF FLUORINATED TRYPTAMINE DERIVATIVES. J Med Chem. 1963 Nov;6:716–719. doi: 10.1021/jm00342a019. [DOI] [PubMed] [Google Scholar]
- Kalir A., Szara S. Synthesis and pharmacological activity of alkylated tryptamines. J Med Chem. 1966 May;9(3):341–344. doi: 10.1021/jm00321a017. [DOI] [PubMed] [Google Scholar]
- Knoll J., Ecsery Z., Magyar K., Sátory E. Novel (-)deprenyl-derived selective inhibitors of B-type monoamine oxidase. The relation of structure to their action. Biochem Pharmacol. 1978;27(13):1739–1747. doi: 10.1016/0006-2952(78)90550-6. [DOI] [PubMed] [Google Scholar]
- Knoll J., Magyar K. Some puzzling pharmacological effects of monoamine oxidase inhibitors. Adv Biochem Psychopharmacol. 1972;5:393–408. [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Mann J., Gershon S. L-deprenyl, a selective monoamine oxidase type-B inhibitor in endogenous depression. Life Sci. 1980 Mar 17;26(11):877–882. doi: 10.1016/0024-3205(80)90350-1. [DOI] [PubMed] [Google Scholar]
- Mantle T. J., Tipton K. F. Monoamine oxidase A and B: a useful concept? Biochem Pharmacol. 1978 Jan 1;27(1):97–101. doi: 10.1016/0006-2952(78)90262-9. [DOI] [PubMed] [Google Scholar]
- Mendlewicz J., Youdim M. B. Anti-depressant potentiation of 5-hydroxytryptophan by L-deprenyl, an MAO "type B" inhibitor. J Neural Transm. 1978;43(3-4):279–286. doi: 10.1007/BF01246965. [DOI] [PubMed] [Google Scholar]
- Reynolds G. P., Elsworth J. D., Blau K., Sandler M., Lees A. J., Stern G. M. Deprenyl is metabolized to methamphetamine and amphetamine in man. Br J Clin Pharmacol. 1978 Dec;6(6):542–544. doi: 10.1111/j.1365-2125.1978.tb00883.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Riederer P., Youdim M. B., Rausch W. D., Birkmayer W., Jellinger K., Seemann D. On the mode of action of L-deprenyl in the human central nervous system. J Neural Transm. 1978;43(3-4):217–226. doi: 10.1007/BF01246958. [DOI] [PubMed] [Google Scholar]
- SWETT L. R., MARTIN W. B., TAYLOR J. D., EVERETT G. M., WYKES A. A., GLADISH Y. C. Structure-activity relations in the pargyline series. Ann N Y Acad Sci. 1963 Jul 8;107:891–898. doi: 10.1111/j.1749-6632.1963.tb13332.x. [DOI] [PubMed] [Google Scholar]
- Salach J. I., Detmer K., Youdim M. B. The reaction of bovine and rat liver monoamine oxidase with [14C]-clorgyline and [14C]-deprenyl. Mol Pharmacol. 1979 Jul;16(1):234–241. [PubMed] [Google Scholar]
- Squires R. F. Multiple forms of monoamine oxidase in intact mitochondria as characterized by selective inhibitors and thermal stability: a comparison of eight mammalian species. Adv Biochem Psychopharmacol. 1972;5:355–370. [PubMed] [Google Scholar]
- Teller D. N., De Guzman T., Lajtha A. Factors affecting morphine uptake into kidney slices. Biochem Pharmacol. 1976 Jun 1;25(11):1271–1284. doi: 10.1016/0006-2952(76)90090-3. [DOI] [PubMed] [Google Scholar]
- Yahr M. D. Overview of present day treatment of Parkinson's disease. J Neural Transm. 1978;43(3-4):227–238. doi: 10.1007/BF01246959. [DOI] [PubMed] [Google Scholar]
- Yang H. Y., Neff N. H. Beta-phenylethylamine: a specific substrate for type B monoamine oxidase of brain. J Pharmacol Exp Ther. 1973 Nov;187(2):365–371. [PubMed] [Google Scholar]
