Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1981 Sep;74(1):171–176. doi: 10.1111/j.1476-5381.1981.tb09970.x

The effects of morphine and methionine-enkephalin on the release of purines from cerebral cortex slices of rats and mice.

T W Stone
PMCID: PMC2071872  PMID: 7272599

Abstract

1 Slices of cerebral cortex from Wistar rats, TO mice or C57 mice were preincubated with [3H]-adenosine, and labelled purines were subsequently releases by electrical stimulation or by perfusing with ouabain, 100 micro M. 2 Electrically-evoked purine release was substantially reduced when the Ca2+ concentration in the medium was lowered from 2.4 to 0.1 mM. In both rats and mice, the electrically-evoked release was increased by morphine and methionine-enkephalin (Met-enkephalin), 10 micro M, and in rats and TO mice by morphine 1 micro M, both drug effects being prevented by naloxone. 3 Purine release evoked by ouabain was also increased by morphine 1 and 10 micro M, though not by Met-enkephalin, from slices of rat cortex. Ouabain-induced release from TO mice was reduced by morphine, and from C57 mice was unchanged. 4 The enhancement by morphine of electrically-evoked purine release may indicate that purines mediate some effects of morphine in the CNS.

Full text

PDF
171

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Birsel S., Szerb J. C. Factors influencing the release of labelled gamma-aminobutyric acid and acetylcholine evoked by electrical stimulation with alternating polarity from rat cortical slices. Can J Physiol Pharmacol. 1980 Oct;58(10):1158–1166. doi: 10.1139/y80-175. [DOI] [PubMed] [Google Scholar]
  2. Celsen B., Kuschinsky K. Effects of morphine on kinetics of 14C-dopamine in rat striatal slices. Naunyn Schmiedebergs Arch Pharmacol. 1974;284(2):159–165. doi: 10.1007/BF00501120. [DOI] [PubMed] [Google Scholar]
  3. Collier H. O., Francis D. L., Henderson G., Schneider C. Quasi morphine-abstinence syndrome. Nature. 1974 May 31;249(456):471–473. doi: 10.1038/249471a0. [DOI] [PubMed] [Google Scholar]
  4. Fagg G. E., Lane J. D. The uptake and release of putative amino acid neurotransmitters. Neuroscience. 1979;4(8):1015–1036. doi: 10.1016/0306-4522(79)90185-4. [DOI] [PubMed] [Google Scholar]
  5. Francis D. L., Roy A. C., Collier H. O. Morphone abstinence and quasi-abstinence effects after phosphodiesterase inhibitors and naloxone. Life Sci. 1975 Jun 15;16(12):1901–1906. doi: 10.1016/0024-3205(75)90299-4. [DOI] [PubMed] [Google Scholar]
  6. Fredholm B. B., Vernet L. Morphine increases depolarization induced purine release from rat cortical slices. Acta Physiol Scand. 1978 Dec;104(4):502–504. doi: 10.1111/j.1748-1716.1978.tb06308.x. [DOI] [PubMed] [Google Scholar]
  7. Ginsborg B. L., Hirst G. D. The effect of adenosine on the release of the transmitter from the phrenic nerve of the rat. J Physiol. 1972 Aug;224(3):629–645. doi: 10.1113/jphysiol.1972.sp009916. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gintzler A. R., Musacchio J. M. Interactions of morphine, adenosine, adenosine triphosphate and phosphodiesterase inhibitors on the field-stimulated guinea-pig ileum. J Pharmacol Exp Ther. 1975 Sep;194(3):575–582. [PubMed] [Google Scholar]
  9. Harms H. H., Wardeh G., Mulder A. H. Effect of adenosine on depolarization-induced release of various radiolabelled neurotransmitters from slices of rat corpus striatum. Neuropharmacology. 1979 Jul;18(7):577–580. doi: 10.1016/0028-3908(79)90107-2. [DOI] [PubMed] [Google Scholar]
  10. Henderson G., Hughes J., Kosterlitz H. W. A new example of a morphine-sensitive neuro-effector junction: adrenergic transmission in the mouse vas deferens. Br J Pharmacol. 1972 Dec;46(4):764–766. doi: 10.1111/j.1476-5381.1972.tb06901.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Henderson G., Hughes J. The effects of morphine on the release of noradrenaline from the mouse vas deferens. Br J Pharmacol. 1976 Aug;57(4):551–557. doi: 10.1111/j.1476-5381.1976.tb10384.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hollins C., Stone T. W. Adenosine inhibition of gamma-aminobutyric acid release from slices of rat cerebral cortex. Br J Pharmacol. 1980 May;69(1):107–112. doi: 10.1111/j.1476-5381.1980.tb10888.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hollins C., Stone T. W. Characteristics of the release of adenosine from slices of rat cerebral cortex. J Physiol. 1980 Jun;303:73–82. doi: 10.1113/jphysiol.1980.sp013271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hollins C., Stone T. W., Lloyd H. Neuronal (Na+,K+)-ATPase and the release of purines from mouse and rat cerebral cortex. Neurosci Lett. 1980 Nov;20(2):217–221. doi: 10.1016/0304-3940(80)90149-4. [DOI] [PubMed] [Google Scholar]
  15. Jhamandas K., Dumbrille A. Regional release of [3H]adenosine derivatives from rat brain in vivo: effect of excitatory amino acids, opiate agonists, and benzodiazepines. Can J Physiol Pharmacol. 1980 Nov;58(11):1262–1278. doi: 10.1139/y80-193. [DOI] [PubMed] [Google Scholar]
  16. Jhamandas K., Sawynok J., Sutak M. Antagonism of morphine action on brain acetylcholine release by methylxanthines and calcium. Eur J Pharmacol. 1978 Jun 1;49(3):309–312. doi: 10.1016/0014-2999(78)90108-5. [DOI] [PubMed] [Google Scholar]
  17. Kitchen I., Hart S. L. Differential loss of biological activity of the enkephalins induced by current. Eur J Pharmacol. 1981 Jan 29;69(3):393–396. doi: 10.1016/0014-2999(81)90491-x. [DOI] [PubMed] [Google Scholar]
  18. Kuschinsky K., Hornykiewicz O. Morphine catalepsy in the rat: relation to striatal dopamine metabolism. Eur J Pharmacol. 1972 Jul;19(1):119–122. doi: 10.1016/0014-2999(72)90086-6. [DOI] [PubMed] [Google Scholar]
  19. Loh H. H., Brase D. A., Sampath-Khanna S., Mar J. B., Way E. L., Li C. H. beta-Endorphin in vitro inhibition of striatal dopamine release. Nature. 1976 Dec 9;264(5586):567–568. doi: 10.1038/264567a0. [DOI] [PubMed] [Google Scholar]
  20. Lord J. A., Waterfield A. A., Hughes J., Kosterlitz H. W. Endogenous opioid peptides: multiple agonists and receptors. Nature. 1977 Jun 9;267(5611):495–499. doi: 10.1038/267495a0. [DOI] [PubMed] [Google Scholar]
  21. McIlwain H. Regulatory significance of the release and action of adenine derivatives in cerebral systems. Biochem Soc Symp. 1972;(36):69–85. [PubMed] [Google Scholar]
  22. Michaelis M. L., Michaelis E. K., Myers S. L. Adenosine modulation of synaptosomal dopamine release. Life Sci. 1979 May 28;24(22):2083–2092. doi: 10.1016/0024-3205(79)90082-1. [DOI] [PubMed] [Google Scholar]
  23. Orrego F. Criteria for the identification of central neurotransmitters, and their application to studies with some nerve tissue preparations in vitro. Neuroscience. 1979;4(8):1037–1057. doi: 10.1016/0306-4522(79)90186-6. [DOI] [PubMed] [Google Scholar]
  24. Phillis J. W., Jiang Z. G., Chelack B. J., Wu P. H. Morphine enhances adenosine release from the in vivo rat cerebral cortex. Eur J Pharmacol. 1980 Jul 11;65(1):97–100. doi: 10.1016/0014-2999(80)90215-0. [DOI] [PubMed] [Google Scholar]
  25. Pull I., McIlwain H. Output of (14C)adenine nucleotides and their derivatives from cerebral tissues. Tetrodotoxin-resistant and calcium ion-requiring components. Biochem J. 1973 Dec;136(4):893–901. doi: 10.1042/bj1360893. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Ribeiro J. A. Purinergic modulation of transmitter release. J Theor Biol. 1979 Sep 21;80(2):259–270. doi: 10.1016/0022-5193(79)90210-8. [DOI] [PubMed] [Google Scholar]
  27. Sandoval M. E. Studies on the relationship between Ca2+ efflux from mitochondria and the release of amino acid neurotransmitters. Brain Res. 1980 Jan 13;181(2):357–367. doi: 10.1016/0006-8993(80)90618-6. [DOI] [PubMed] [Google Scholar]
  28. Sawynok J., Jhamandas K. H. Inhibition of acetylcholine release from cholinergic nerves by adenosine, adenine nucleotides and morphine: antagonism by theophylline. J Pharmacol Exp Ther. 1976 May;197(2):379–390. [PubMed] [Google Scholar]
  29. Shimizu H., Creveling C. R., Daly J. Stimulated formation of adenosine 3',5'-cyclic phosphate in cerebral cortex: synergism between electrical activity and biogenic amines. Proc Natl Acad Sci U S A. 1970 Apr;65(4):1033–1040. doi: 10.1073/pnas.65.4.1033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Stone T. W., Hollins C., Lloyd H. Methylxanthines modulate adenosine release from slices of cerebral cortex. Brain Res. 1981 Mar 2;207(2):421–431. doi: 10.1016/0006-8993(81)90374-7. [DOI] [PubMed] [Google Scholar]
  31. Stone T. W. Theophylline does not affect morphine inhibition of the isolated vas deferens. Br J Pharmacol. 1981 Jul;73(3):787–789. doi: 10.1111/j.1476-5381.1981.tb16816.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Valdés F., Orrego F. Electrically induced, calcium-dependent release of endogenous GABA from rat brain cortex slices. Brain Res. 1978 Feb 10;141(2):357–363. doi: 10.1016/0006-8993(78)90206-8. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES