Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1991 Jan;173(1):394–397. doi: 10.1128/jb.173.1.394-397.1991

RNA polymerases from Pseudomonas aeruginosa and Pseudomonas syringae respond to Escherichia coli activator proteins.

J G Gao 1, G N Gussin 1
PMCID: PMC207199  PMID: 1898924

Abstract

The activities of RNA polymerases (RNAPs) from Pseudomonas aeruginosa and Pseudomonas syringae were compared with that of Escherichia coli RNAP. All three enzymes are able to initiate transcription at the trpBA promoter of P. aeruginosa and at the coliphage lambda promoters, pRM and pRE, in response to heterospecific activators (TrpI protein, repressor, and cII protein, respectively). However, both Pseudomonas polymerases have less stringent requirements for promoter recognition in the absence of activators than does E. coli RNAP.

Full text

PDF
394

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allan B., Kropinski A. M. DNA-dependent RNA polymerase from Pseudomonas aeruginosa. Biochem Cell Biol. 1987 Sep;65(9):776–782. doi: 10.1139/o87-101. [DOI] [PubMed] [Google Scholar]
  2. Burgess R. R., Jendrisak J. J. A procedure for the rapid, large-scall purification of Escherichia coli DNA-dependent RNA polymerase involving Polymin P precipitation and DNA-cellulose chromatography. Biochemistry. 1975 Oct 21;14(21):4634–4638. doi: 10.1021/bi00692a011. [DOI] [PubMed] [Google Scholar]
  3. Chang M., Crawford I. P. The roles of indoleglycerol phosphate and the TrpI protein in the expression of trpBA from Pseudomonas aeruginosa. Nucleic Acids Res. 1990 Feb 25;18(4):979–988. doi: 10.1093/nar/18.4.979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chang M., Hadero A., Crawford I. P. Sequence of the Pseudomonas aeruginosa trpI activator gene and relatedness of trpI to other procaryotic regulatory genes. J Bacteriol. 1989 Jan;171(1):172–183. doi: 10.1128/jb.171.1.172-183.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Crawford I. P. Evolution of a biosynthetic pathway: the tryptophan paradigm. Annu Rev Microbiol. 1989;43:567–600. doi: 10.1146/annurev.mi.43.100189.003031. [DOI] [PubMed] [Google Scholar]
  6. Ernst H., Hartmann G. R., Domdey H. Species specificity of promoter recognition by RNA polymerase and its transfer by the sigma factor. Eur J Biochem. 1982 Jun;124(3):427–433. doi: 10.1111/j.1432-1033.1982.tb06610.x. [DOI] [PubMed] [Google Scholar]
  7. Gribskov M., Burgess R. R. Sigma factors from E. coli, B. subtilis, phage SP01, and phage T4 are homologous proteins. Nucleic Acids Res. 1986 Aug 26;14(16):6745–6763. doi: 10.1093/nar/14.16.6745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gussin G. N., Temple E., Brown S. E., Court D. Repression of a mutant derivative of the pRE promoter of bacteriophage lambda by its activator, CII. Gene. 1986;46(2-3):171–180. doi: 10.1016/0378-1119(86)90401-4. [DOI] [PubMed] [Google Scholar]
  9. Harley C. B., Reynolds R. P. Analysis of E. coli promoter sequences. Nucleic Acids Res. 1987 Mar 11;15(5):2343–2361. doi: 10.1093/nar/15.5.2343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Henikoff S., Haughn G. W., Calvo J. M., Wallace J. C. A large family of bacterial activator proteins. Proc Natl Acad Sci U S A. 1988 Sep;85(18):6602–6606. doi: 10.1073/pnas.85.18.6602. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ho Y. S., Rosenberg M. Characterization of a third, cII-dependent, coordinately activated promoter on phage lambda involved in lysogenic development. J Biol Chem. 1985 Sep 25;260(21):11838–11844. [PubMed] [Google Scholar]
  12. Hochschild A., Irwin N., Ptashne M. Repressor structure and the mechanism of positive control. Cell. 1983 Feb;32(2):319–325. doi: 10.1016/0092-8674(83)90451-8. [DOI] [PubMed] [Google Scholar]
  13. Hwang J. J., Gussin G. N. Interactions between Escherichia coli RNA polymerase and lambda repressor. Mutations in PRM affect repression of PR. J Mol Biol. 1988 Apr 20;200(4):735–739. doi: 10.1016/0022-2836(88)90484-6. [DOI] [PubMed] [Google Scholar]
  14. Johnson J. C., DeBacker M., Boezi J. A. Deoxyribonucleic acid-dependent ribonucleic acid polymerase of Pseudomonas putida. J Biol Chem. 1971 Mar 10;246(5):1222–1232. [PubMed] [Google Scholar]
  15. Manch J. N., Crawford I. P. Genetic evidence for a positive-acting regulatory factor mediating induction in the tryptophan pathway of Pseudomonas aeruginosa. J Mol Biol. 1982 Mar 25;156(1):67–77. doi: 10.1016/0022-2836(82)90459-4. [DOI] [PubMed] [Google Scholar]
  16. McClure W. R. Mechanism and control of transcription initiation in prokaryotes. Annu Rev Biochem. 1985;54:171–204. doi: 10.1146/annurev.bi.54.070185.001131. [DOI] [PubMed] [Google Scholar]
  17. Ren Y. L., Garges S., Adhya S., Krakow J. S. Cooperative DNA binding of heterologous proteins: evidence for contact between the cyclic AMP receptor protein and RNA polymerase. Proc Natl Acad Sci U S A. 1988 Jun;85(12):4138–4142. doi: 10.1073/pnas.85.12.4138. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Su W., Porter S., Kustu S., Echols H. DNA-looping and enhancer activity: association between DNA-bound NtrC activator and RNA polymerase at the bacterial glnA promoter. Proc Natl Acad Sci U S A. 1990 Jul;87(14):5504–5508. doi: 10.1073/pnas.87.14.5504. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Wiggs J. L., Bush J. W., Chamberlin M. J. Utilization of promoter and terminator sites on bacteriophage T7 DNA by RNA polymerases from a variety of bacterial orders. Cell. 1979 Jan;16(1):97–109. doi: 10.1016/0092-8674(79)90191-0. [DOI] [PubMed] [Google Scholar]
  20. Woese C. R. Bacterial evolution. Microbiol Rev. 1987 Jun;51(2):221–271. doi: 10.1128/mr.51.2.221-271.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Wulff D. L., Mahoney M. E. Cross-specificities between cII-like proteins and pRE-like promoters of lambdoid bacteriophages. Genetics. 1987 Apr;115(4):597–604. doi: 10.1093/genetics/115.4.597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Zimmer S. G., Millette R. L. DNA-dependent RNA polymerase from Pseudomonas BAL-31. I. Purification and properties of the enzyme. Biochemistry. 1975 Jan 28;14(2):290–299. doi: 10.1021/bi00673a015. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES