Skip to main content
British Journal of Experimental Pathology logoLink to British Journal of Experimental Pathology
. 1973 Dec;54(6):684–691.

Experimental Air Embolism: Measurement of Microbubbles Using the Coulter Counter®

D C Grulke, N A Marsh, B A Hills
PMCID: PMC2072609  PMID: 4783166

Abstract

Microbubbles in the range 20-250 μm were produced with fine hypodermic needles (0·001, 0·002 and 0·003 inch internal diameter) and were measured using a conventional Coulter Counter. Various bubble sizes could be obtained by varying combinations of needle size, gas pressure, liquid surfactant content and liquid flow rate. Bubbles produced and measured in this way were found to have a very narrow size distribution (80% of the bubbles falling within ± 2 μm of the mean radius) and could be generated at relatively constant frequencies. Over the entire bubble size range, the Coulter Counter method correlated well with two other bubble measuring methods: terminal rise velocity and volume flow rate of gas divided by bubble frequency.

It is suggested that this method will enable the introduction of a known number of accurately sized microbubbles into the circulation for the purpose of studying experimental gas embolism.

Full text

PDF
684

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brierley J. B. Brain damage complicating open-heart surgery: a neuropathological study of 46 patients. Proc R Soc Med. 1967 Sep;60(9):858–859. doi: 10.1177/003591576706000909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Buckles R. G. The physics of bubble formation and growth. Aerosp Med. 1968 Oct;39(10):1062–1069. [PubMed] [Google Scholar]
  3. CLAY J. R. HISTOPATHOLOGY OF EXPERIMENTAL DECOMPRESSION SICKNESS. Aerosp Med. 1963 Dec;34:1107–1110. [PubMed] [Google Scholar]
  4. Chan K. S., Yang W. Survey of literature related to the problems of gas embolism in human body. J Biomech. 1969 Jul;2(3):299–312. doi: 10.1016/0021-9290(69)90086-4. [DOI] [PubMed] [Google Scholar]
  5. Clark M. L., Philip R. B., Gowdey C. W. Changes in platelets and lipids in experimental aeroembolism and bends. Aerosp Med. 1969 Oct;40(10):1094–1098. [PubMed] [Google Scholar]
  6. Emerson L. V., Hempleman H. V., Lentle R. G. The passage of gaseous emboli through the pulmonary circulation. Respir Physiol. 1967 Oct;3(2):213–219. doi: 10.1016/0034-5687(67)90011-4. [DOI] [PubMed] [Google Scholar]
  7. Evans A., Barnard E. E., Walder D. N. Detection of gas bubbles in man at decompression. Aerosp Med. 1972 Oct;43(10):1095–1096. [PubMed] [Google Scholar]
  8. FRIES C. C., LEVOWITZ B., ADLER S., COOK A. W., KARLSON K. E., DENNIS C. Experimental cerebral gas embolism. Ann Surg. 1957 Apr;145(4):461–470. doi: 10.1097/00000658-195704000-00002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Justice C., Leach J., Edwards W. S. The harmful effects and treatment of coronary air embolism during open-heart surgery. Ann Thorac Surg. 1972 Jul;14(1):47–53. doi: 10.1016/s0003-4975(10)65197-1. [DOI] [PubMed] [Google Scholar]
  10. Kessler J., Patterson R. H., Jr The production of microemboli by various blood oxygenators. Ann Thorac Surg. 1970 Mar;9(3):221–228. doi: 10.1016/s0003-4975(10)65494-x. [DOI] [PubMed] [Google Scholar]
  11. Lee W. H., Jr, Hairston P. Structural effects on blood proteins at the gas-blood interface. Fed Proc. 1971 Sep-Oct;30(5):1615–1622. [PubMed] [Google Scholar]
  12. Lever M. J., Miller K. W., Paton W. D., Smith E. B. Experiments on the genesis of bubbles as a result of rapid decompression. J Physiol. 1966 Jun;184(4):964–969. doi: 10.1113/jphysiol.1966.sp007960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. MATTERN C. F., BRACKETT F. S., OLSON B. J. Determination of number and size of particles by electrical gating: blood cells. J Appl Physiol. 1957 Jan;10(1):56–70. doi: 10.1152/jappl.1957.10.1.56. [DOI] [PubMed] [Google Scholar]
  14. Nishi R. Y., Livingstone S. D. Intravascular changes associated with hyperbaric decompression: Theoretical considerations using ultrasound. Aerosp Med. 1973 Feb;44(2):179–183. [PubMed] [Google Scholar]
  15. Spencer M. P., Lawrence G. H., Thomas G. I., Sauvage L. R. The use of ultrasonics in the determination of arterial aeroembolism during open-heart surgery. Ann Thorac Surg. 1969 Dec;8(6):489–497. doi: 10.1016/s0003-4975(10)66085-7. [DOI] [PubMed] [Google Scholar]
  16. Tsuji H. K., Redington J. V., Mendez A., Kay J. H. The prevention of air embolism during intracardiac surgery. J Thorac Cardiovasc Surg. 1970 Apr;59(4):484–488. [PubMed] [Google Scholar]
  17. Warren B. A., Philp R. B., Inwood M. J. The ultrastructural morphology of air embolism: platelet adhesion to the interface and endothelial damage. Br J Exp Pathol. 1973 Apr;54(2):163–172. [PMC free article] [PubMed] [Google Scholar]

Articles from British Journal of Experimental Pathology are provided here courtesy of Wiley

RESOURCES