Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1991 Mar;173(5):1634–1641. doi: 10.1128/jb.173.5.1634-1641.1991

Transcription attenuation-mediated control of leu operon expression: influence of the number of Leu control codons.

J M Bartkus 1, B Tyler 1, J M Calvo 1
PMCID: PMC207312  PMID: 1999384

Abstract

Four adjacent Leu codons within the leu leader RNA are critically important in transcription attenuation-mediated control of leu operon expression in Salmonella typhimurium and Escherichia coli (P. W. Carter, D. L. Weiss, H. L. Weith, and J. M. Calvo, J. Bacteriol. 162:943-949, 1985). The leader region from S. typhimurium was altered by site-directed mutagenesis to produce constructs having between one and seven adjacent Leu codons, all CUA. leu operon expression was measured in strains containing six of these constructs, each integrated into the chromosome in a single copy. Operon expression was sufficiently high that all strains grew in minimal medium unsupplemented by leucine. Expression of the operon was measured in strains cultured in such a way that their growth was limited by the intracellular concentration of either leucine or of leucyl-tRNA. In general, the leu operon for each construct responded similarly to the parent construct in terms of the degree of expression as a function of the degree of limitation. However, a strain containing (CUA)1 and, to a certain extent, a strain having (CUA)2 responded somewhat more sluggishly and strains containing (CUA)6 and (CUA)7 responded more sensitively to limitations than did the parent construct. In addition, DNA fragments containing the leu promoter and leader region were used as templates in in vitro transcription reactions employing purified RNA polymerase. With nucleoside triphosphate concentrations of 200 microM, RNA polymerase paused during transcription of the leu leader region at a site about 95 bp downstream from the site of transcription initiation. The halftimes of the pause were 1 min at 37 degrees C and 3 min at 22 degrees C. The pause was lengthened substantially when the GTP concentration was lowered to 20 micromoles. Our results are interpreted most easily in terms of an all-or-none model. Given two Leu control codons, the operon responds with nearly maximum output over a wide range of leucine limitation, and that outcome does not change much with increasing numbers of control codons.

Full text

PDF
1634

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Calvo J. M., Freundlich M., Umbarger H. E. Regulation of branched-chain amino acid biosynthesis in Salmonella typhimurium: isolation of regulatory mutants. J Bacteriol. 1969 Mar;97(3):1272–1282. doi: 10.1128/jb.97.3.1272-1282.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Carter P. W., Bartkus J. M., Calvo J. M. Transcription attenuation in Salmonella typhimurium: the significance of rare leucine codons in the leu leader. Proc Natl Acad Sci U S A. 1986 Nov;83(21):8127–8131. doi: 10.1073/pnas.83.21.8127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Carter P. W., Weiss D. L., Weith H. L., Calvo J. M. Mutations that convert the four leucine codons of the Salmonella typhimurium leu leader to four threonine codons. J Bacteriol. 1985 Jun;162(3):943–949. doi: 10.1128/jb.162.3.943-949.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chan C. L., Landick R. The Salmonella typhimurium his operon leader region contains an RNA hairpin-dependent transcription pause site. Mechanistic implications of the effect on pausing of altered RNA hairpins. J Biol Chem. 1989 Dec 5;264(34):20796–20804. [PubMed] [Google Scholar]
  5. Freundlich M., Trela J., Peng W. Evidence that the majority of leucine transfer ribonucleic acid is not involved in repression in Salmonella typhimurium. J Bacteriol. 1971 Nov;108(2):951–953. doi: 10.1128/jb.108.2.951-953.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gardner J. F. Initiation, pausing, and termination of transcription in the threonine operon regulatory region of Escherichia coli. J Biol Chem. 1982 Apr 10;257(7):3896–3904. [PubMed] [Google Scholar]
  7. Gemmill R. M., Jones J. W., Haughn G. W., Calvo J. M. Transcription initiation sites of the leucine operons of Salmonella typhimurium and Escherichia coli. J Mol Biol. 1983 Oct 15;170(1):39–59. doi: 10.1016/s0022-2836(83)80226-5. [DOI] [PubMed] [Google Scholar]
  8. Gemmill R. M., Wessler S. R., Keller E. B., Calvo J. M. leu operon of Salmonella typhimurium is controlled by an attenuation mechanism. Proc Natl Acad Sci U S A. 1979 Oct;76(10):4941–4945. doi: 10.1073/pnas.76.10.4941. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gillam S., Smith M. Site-specific mutagenesis using synthetic oligodeoxyribonucleotide primers: I. Optimum conditions and minimum ologodeoxyribonucleotide length. Gene. 1979 Dec;8(1):81–97. doi: 10.1016/0378-1119(79)90009-x. [DOI] [PubMed] [Google Scholar]
  10. Hanahan D. Studies on transformation of Escherichia coli with plasmids. J Mol Biol. 1983 Jun 5;166(4):557–580. doi: 10.1016/s0022-2836(83)80284-8. [DOI] [PubMed] [Google Scholar]
  11. Hauser C. A., Sharp J. A., Hatfield L. K., Hatfield G. W. Pausing of RNA polymerase during in vitro transcription through the ilvB and ilvGEDA attenuator regions of Escherichia coli K12. J Biol Chem. 1985 Feb 10;260(3):1765–1770. [PubMed] [Google Scholar]
  12. Kunkel T. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc Natl Acad Sci U S A. 1985 Jan;82(2):488–492. doi: 10.1073/pnas.82.2.488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. LaRossa R., Vögell G., Low K. B., Söll D. Regulation of biosynthesis of aminoacyl-tRNA synthetases and of tRNA in Escherichia coli. II. Isolation of regulatory mutants affecting leucyl-tRNA synthetase levels. J Mol Biol. 1977 Dec 25;117(4):1033–1048. doi: 10.1016/s0022-2836(77)80011-9. [DOI] [PubMed] [Google Scholar]
  14. Lis J. T. Fractionation of DNA fragments by polyethylene glycol induced precipitation. Methods Enzymol. 1980;65(1):347–353. doi: 10.1016/s0076-6879(80)65044-7. [DOI] [PubMed] [Google Scholar]
  15. Low B., Gates F., Goldstein T., Söll D. Isolation and partial characterization of temperature-sensitive Escherichia coli mutants with altered leucyl- and seryl-transfer ribonucleic acid synthetases. J Bacteriol. 1971 Nov;108(2):742–750. doi: 10.1128/jb.108.2.742-750.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Miyada C. G., Soberón X., Itakura K., Wilcox G. The use of synthetic oligodeoxyribonucleotides to produce specific deletions in the araBAD promoter of Escherichia coli B/r. Gene. 1982 Feb;17(2):167–177. doi: 10.1016/0378-1119(82)90070-1. [DOI] [PubMed] [Google Scholar]
  17. Parker J., Pollard J. W., Friesen J. D., Stanners C. P. Stuttering: high-level mistranslation in animal and bacterial cells. Proc Natl Acad Sci U S A. 1978 Mar;75(3):1091–1095. doi: 10.1073/pnas.75.3.1091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Searles L. L., Calvo J. M. Permeabilized cell and radiochemical assays for beta-isopropylmalate dehydrogenase. Methods Enzymol. 1988;166:225–229. doi: 10.1016/s0076-6879(88)66029-0. [DOI] [PubMed] [Google Scholar]
  20. Searles L. L., Wessler S. R., Calvo J. M. Transcription attenuation is the major mechanism by which the leu operon of Salmonella typhimurium is controlled. J Mol Biol. 1983 Jan 25;163(3):377–394. doi: 10.1016/0022-2836(83)90064-5. [DOI] [PubMed] [Google Scholar]
  21. Wessler S. R., Calvo J. M. Control of leu operon expression in Escherichia coli by a transcription attenuation mechanism. J Mol Biol. 1981 Jul 15;149(4):579–597. doi: 10.1016/0022-2836(81)90348-x. [DOI] [PubMed] [Google Scholar]
  22. Williams A. L., Jr, Tinoco I., Jr A dynamic programming algorithm for finding alternative RNA secondary structures. Nucleic Acids Res. 1986 Jan 10;14(1):299–315. doi: 10.1093/nar/14.1.299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Winkler M. E., Yanofsky C. Pausing of RNA polymerase during in vitro transcription of the tryptophan operon leader region. Biochemistry. 1981 Jun 23;20(13):3738–3744. doi: 10.1021/bi00516a011. [DOI] [PubMed] [Google Scholar]
  24. Wood W. I., Gitschier J., Lasky L. A., Lawn R. M. Base composition-independent hybridization in tetramethylammonium chloride: a method for oligonucleotide screening of highly complex gene libraries. Proc Natl Acad Sci U S A. 1985 Mar;82(6):1585–1588. doi: 10.1073/pnas.82.6.1585. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES