Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1991 Mar;173(5):1729–1737. doi: 10.1128/jb.173.5.1729-1737.1991

Isolation, cloning, mapping, and nucleotide sequencing of the gene encoding flavodoxin in Escherichia coli.

C Osborne 1, L M Chen 1, R G Matthews 1
PMCID: PMC207324  PMID: 1999390

Abstract

The flavodoxins constitute a highly conserved family of small, acidic electron transfer proteins with flavin mononucleotide prosthetic groups. They are found in prokaryotes and in red and green algae, where they provide electrons at low potentials for the reduction of nitrogen by nitrogenase, for the light-dependent reduction of NADP+ in photosynthesis, and for the reduction of sulfite. Proteins with the physical characteristics of flavodoxins have been implicated in the reductive activation of pyruvate formate-lyase and cobalamin-dependent methionine synthase in Escherichia coli. We have purified flavodoxin to homogeneity from E. coli, determined its N-terminal amino acid sequence, and used this sequence to construct a 64-fold degenerate oligonucleotide probe for the flavodoxin gene. Because the phenotype of a flavodoxin mutant is not known, we used this degenerate probe to screen the phages of the Kohara library and identified two phages, with inserts mapping at approximately 16 min, that hybridized to the probe. The flavodoxin gene, designated fldA, was subcloned from the DNA in the overlap region of these two clones. The deduced amino acid sequence, determined by nucleotide sequencing of the flavodoxin gene, shows strong homology with flavodoxins from nitrogen-fixing bacteria and cyanobacteria. The fldA gene maps at 15.9 min on the E. coli chromosome and is transcribed in a counterclockwise direction.

Full text

PDF
1729

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baird L., Georgopoulos C. Identification, cloning, and characterization of the Escherichia coli sohA gene, a suppressor of the htrA (degP) null phenotype. J Bacteriol. 1990 Mar;172(3):1587–1594. doi: 10.1128/jb.172.3.1587-1594.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Banerjee R. V., Harder S. R., Ragsdale S. W., Matthews R. G. Mechanism of reductive activation of cobalamin-dependent methionine synthase: an electron paramagnetic resonance spectroelectrochemical study. Biochemistry. 1990 Feb 6;29(5):1129–1135. doi: 10.1021/bi00457a005. [DOI] [PubMed] [Google Scholar]
  3. Chisholm D. A convenient moderate-scale procedure for obtaining DNA from bacteriophage lambda. Biotechniques. 1989 Jan;7(1):21–23. [PubMed] [Google Scholar]
  4. Deistung J., Thorneley R. N. Electron transfer to nitrogenase. Characterization of flavodoxin from Azotobacter chroococcum and comparison of its redox potentials with those of flavodoxins from Azotobacter vinelandii and Klebsiella pneumoniae (nifF-gene product). Biochem J. 1986 Oct 1;239(1):69–75. doi: 10.1042/bj2390069. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Drummond M. H. Structure predictions and surface charge of nitrogenase flavodoxins from Klebsiella pneumoniae and Azotobacter vinelandii. Eur J Biochem. 1986 Sep 15;159(3):549–553. doi: 10.1111/j.1432-1033.1986.tb09921.x. [DOI] [PubMed] [Google Scholar]
  6. Eliasson R., Fontecave M., Jörnvall H., Krook M., Pontis E., Reichard P. The anaerobic ribonucleoside triphosphate reductase from Escherichia coli requires S-adenosylmethionine as a cofactor. Proc Natl Acad Sci U S A. 1990 May;87(9):3314–3318. doi: 10.1073/pnas.87.9.3314. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Frasca V., Banerjee R. V., Dunham W. R., Sands R. H., Matthews R. G. Cobalamin-dependent methionine synthase from Escherichia coli B: electron paramagnetic resonance spectra of the inactive form and the active methylated form of the enzyme. Biochemistry. 1988 Nov 1;27(22):8458–8465. doi: 10.1021/bi00422a025. [DOI] [PubMed] [Google Scholar]
  8. Fujii K., Huennekens F. M. Activation of methionine synthetase by a reduced triphosphopyridine nucleotide-dependent flavoprotein system. J Biol Chem. 1974 Nov 10;249(21):6745–6753. [PubMed] [Google Scholar]
  9. Groisman E. A., Casadaban M. J. Mini-mu bacteriophage with plasmid replicons for in vivo cloning and lac gene fusing. J Bacteriol. 1986 Oct;168(1):357–364. doi: 10.1128/jb.168.1.357-364.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hamilton C. M., Aldea M., Washburn B. K., Babitzke P., Kushner S. R. New method for generating deletions and gene replacements in Escherichia coli. J Bacteriol. 1989 Sep;171(9):4617–4622. doi: 10.1128/jb.171.9.4617-4622.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Knappe J., Neugebauer F. A., Blaschkowski H. P., Gänzler M. Post-translational activation introduces a free radical into pyruvate formate-lyase. Proc Natl Acad Sci U S A. 1984 Mar;81(5):1332–1335. doi: 10.1073/pnas.81.5.1332. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Knappe J., Schmitt T. A novel reaction of S-adenosyl-L-methionine correlated with the activation of pyruvate formate-lyase. Biochem Biophys Res Commun. 1976 Aug 23;71(4):1110–1117. doi: 10.1016/0006-291x(76)90768-3. [DOI] [PubMed] [Google Scholar]
  13. Knoell H. E., Knappe J. Escherichia coli ferredoxin, an iron-sulfur protein of the adrenodoxin type. Eur J Biochem. 1974 Dec 16;50(1):245–252. doi: 10.1111/j.1432-1033.1974.tb03893.x. [DOI] [PubMed] [Google Scholar]
  14. Konigsberg W., Godson G. N. Evidence for use of rare codons in the dnaG gene and other regulatory genes of Escherichia coli. Proc Natl Acad Sci U S A. 1983 Feb;80(3):687–691. doi: 10.1073/pnas.80.3.687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Laudenbach D. E., Reith M. E., Straus N. A. Isolation, sequence analysis, and transcriptional studies of the flavodoxin gene from Anacystis nidulans R2. J Bacteriol. 1988 Jan;170(1):258–265. doi: 10.1128/jb.170.1.258-265.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Martin A. E., Burgess B. K., Iismaa S. E., Smartt C. T., Jacobson M. R., Dean D. R. Construction and characterization of an Azotobacter vinelandii strain with mutations in the genes encoding flavodoxin and ferredoxin I. J Bacteriol. 1989 Jun;171(6):3162–3167. doi: 10.1128/jb.171.6.3162-3167.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Massey V., Hemmerich P. Active-site probes of flavoproteins. Biochem Soc Trans. 1980 Jun;8(3):246–257. doi: 10.1042/bst0080246. [DOI] [PubMed] [Google Scholar]
  18. Smith W. W., Burnett R. M., Darling G. D., Ludwig M. L. Structure of the semiquinone form of flavodoxin from Clostridum MP. Extension of 1.8 A resolution and some comparisons with the oxidized state. J Mol Biol. 1977 Nov 25;117(1):195–225. doi: 10.1016/0022-2836(77)90031-6. [DOI] [PubMed] [Google Scholar]
  19. Smith W. W., Pattridge K. A., Ludwig M. L., Petsko G. A., Tsernoglou D., Tanaka M., Yasunobu K. T. Structure of oxidized flavodoxin from Anacystis nidulans. J Mol Biol. 1983 Apr 25;165(4):737–753. doi: 10.1016/s0022-2836(83)80277-0. [DOI] [PubMed] [Google Scholar]
  20. Stubbe J. A. Protein radical involvement in biological catalysis? Annu Rev Biochem. 1989;58:257–285. doi: 10.1146/annurev.bi.58.070189.001353. [DOI] [PubMed] [Google Scholar]
  21. Tabata S., Higashitani A., Takanami M., Akiyama K., Kohara Y., Nishimura Y., Nishimura A., Yasuda S., Hirota Y. Construction of an ordered cosmid collection of the Escherichia coli K-12 W3110 chromosome. J Bacteriol. 1989 Feb;171(2):1214–1218. doi: 10.1128/jb.171.2.1214-1218.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Taylor R. T., Weissbach H. Escherichia coli B N5-methyltetrahydrofolate-homocysteine methyltransferase: sequential formation of bound methylcobalamin with S-adenosyl-L-methionine and N5-methyltetrahydrofolate. Arch Biochem Biophys. 1969 Feb;129(2):728–744. doi: 10.1016/0003-9861(69)90234-3. [DOI] [PubMed] [Google Scholar]
  23. Vetter H., Jr, Knappe J. Flavodoxin and ferredoxin of Escherichia coli. Hoppe Seylers Z Physiol Chem. 1971 Mar;352(3):433–446. doi: 10.1515/bchm2.1971.352.1.433. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES