Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1991 Mar;173(5):1765–1769. doi: 10.1128/jb.173.5.1765-1769.1991

Nucleotide sequence and molecular characterization of pnlA, the structural gene for damage-inducible pectin lyase of Erwinia carotovora subsp. carotovora 71.

A Chatterjee 1, J L McEvoy 1, J P Chambost 1, F Blasco 1, A K Chatterjee 1
PMCID: PMC207328  PMID: 1705542

Abstract

In a previous study, pnlA (the DNA damage-inducible structural gene for pectin lyase) of Erwinia carotovora subsp. carotovora 71 was localized to a 1.4-kb DNA segment within a 3.4-kb EcoRI fragment (J. L. McEvoy, H. Murata, and A. K. Chatterjee, J. Bacteriol. 172:3284-3289, 1990). We present here DNA sequence data for a 2.2-kb region revealing an open reading frame of 870 bases, corresponding to a protein (Pnl) of an approximate molecular mass of 32,100 Da and an isoelectric point of 9.92. Although initiation of translation is presumed to occur at the ATG codon, direct protein sequencing revealed alanine as the N-terminal amino acid, probably as a consequence of posttranslational removal of the initiating amino acid. The sequence of the first 20 amino acid residues of Pnl, purified from E. carotovora subsp. carotovora 71, agreed completely with the predicted amino acid sequence of the N-terminal segment. This finding also indicated that Pnl is not subject to processing by a signal peptidase. The transcriptional start site of pnlA was determined to reside 80 bp upstream of the translational start site. Deletion analysis revealed that 218 bp of DNA upstream of the transcriptional start site is sufficient for induction of pnlA by mitomycin C. Within 600 bp upstream of the translational start site, no sequences resembling a LexA binding site (SOS box) or a cyclic AMP receptor protein binding site were found. However, palindromic sequences were detected at -187 and -86 bp relative to the translational start site, and these could be potential sites for the binding of a regulatory protein(s). Comparison of the deduced amino acid sequence for PnlA with that of a Pnl from Aspergillus niger and with those of various pectate lyases of Erwinia species revealed a low degree of homology dispersed throughout the length of the proteins.

Full text

PDF
1765

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armstrong S. K., Pettis G. S., Forrester L. J., McIntosh M. A. The Escherichia coli enterobactin biosynthesis gene, entD: nucleotide sequence and membrane localization of its protein product. Mol Microbiol. 1989 Jun;3(6):757–766. doi: 10.1111/j.1365-2958.1989.tb00224.x. [DOI] [PubMed] [Google Scholar]
  2. Chatterjee A. K. Acceptance by Erwinia spp. of R plasmid R68.45 and its ability to mobilize the chromosome of Erwinia chrysanthemi. J Bacteriol. 1980 Apr;142(1):111–119. doi: 10.1128/jb.142.1.111-119.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Gysler C., Harmsen J. A., Kester H. C., Visser J., Heim J. Isolation and structure of the pectin lyase D-encoding gene from Aspergillus niger. Gene. 1990 Apr 30;89(1):101–108. doi: 10.1016/0378-1119(90)90211-9. [DOI] [PubMed] [Google Scholar]
  5. Henikoff S. Unidirectional digestion with exonuclease III in DNA sequence analysis. Methods Enzymol. 1987;155:156–165. doi: 10.1016/0076-6879(87)55014-5. [DOI] [PubMed] [Google Scholar]
  6. Hinton J. C., Sidebotham J. M., Gill D. R., Salmond G. P. Extracellular and periplasmic isoenzymes of pectate lyase from Erwinia carotovora subspecies carotovora belong to different gene families. Mol Microbiol. 1989 Dec;3(12):1785–1795. doi: 10.1111/j.1365-2958.1989.tb00164.x. [DOI] [PubMed] [Google Scholar]
  7. Keen N. T., Tamaki S. Structure of two pectate lyase genes from Erwinia chrysanthemi EC16 and their high-level expression in Escherichia coli. J Bacteriol. 1986 Nov;168(2):595–606. doi: 10.1128/jb.168.2.595-606.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Lei S. P., Lin H. C., Wang S. S., Callaway J., Wilcox G. Characterization of the Erwinia carotovora pelB gene and its product pectate lyase. J Bacteriol. 1987 Sep;169(9):4379–4383. doi: 10.1128/jb.169.9.4379-4383.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lei S. P., Lin H. C., Wang S. S., Wilcox G. Characterization of the Erwinia carotovora pelA gene and its product pectate lyase A. Gene. 1988;62(1):159–164. doi: 10.1016/0378-1119(88)90590-2. [DOI] [PubMed] [Google Scholar]
  10. McEvoy J. L., Murata H., Chatterjee A. K. Molecular cloning and characterization of an Erwinia carotovora subsp. carotovora pectin lyase gene that responds to DNA-damaging agents. J Bacteriol. 1990 Jun;172(6):3284–3289. doi: 10.1128/jb.172.6.3284-3289.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Pettis G. S., Brickman T. J., McIntosh M. A. Transcriptional mapping and nucleotide sequence of the Escherichia coli fepA-fes enterobactin region. Identification of a unique iron-regulated bidirectional promoter. J Biol Chem. 1988 Dec 15;263(35):18857–18863. [PubMed] [Google Scholar]
  12. Pugsley A. P., Schwartz M. Colicin E2 release: lysis, leakage or secretion? Possible role of a phospholipase. EMBO J. 1984 Oct;3(10):2393–2397. doi: 10.1002/j.1460-2075.1984.tb02145.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Reverchon S., Huang Y., Bourson C., Robert-Baudouy J. Nucleotide sequences of the Erwinia chrysanthemi ogl and pelE genes negatively regulated by the kdgR gene product. Gene. 1989 Dec 21;85(1):125–134. doi: 10.1016/0378-1119(89)90472-1. [DOI] [PubMed] [Google Scholar]
  14. Russel M., Kidd S., Kelley M. R. An improved filamentous helper phage for generating single-stranded plasmid DNA. Gene. 1986;45(3):333–338. doi: 10.1016/0378-1119(86)90032-6. [DOI] [PubMed] [Google Scholar]
  15. Selvaraj G., Fong Y. C., Iyer V. N. A portable DNA sequence carrying the cohesive site (cos) of bacteriophage lambda and the mob (mobilization) region of the broad-host-range plasmid RK2: a module for the construction of new cosmids. Gene. 1984 Dec;32(1-2):235–241. doi: 10.1016/0378-1119(84)90051-9. [DOI] [PubMed] [Google Scholar]
  16. Tamaki S. J., Gold S., Robeson M., Manulis S., Keen N. T. Structure and organization of the pel genes from Erwinia chrysanthemi EC16. J Bacteriol. 1988 Aug;170(8):3468–3478. doi: 10.1128/jb.170.8.3468-3478.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Zink R. T., Chatterjee A. K. Cloning and expression in Escherichia coli of pectinase genes of Erwinia carotovora subsp. carotovora. Appl Environ Microbiol. 1985 Mar;49(3):714–717. doi: 10.1128/aem.49.3.714-717.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Zink R. T., Engwall J. K., McEvoy J. L., Chatterjee A. K. recA is required in the induction of pectin lyase and carotovoricin in Erwinia carotovora subsp. carotovora. J Bacteriol. 1985 Oct;164(1):390–396. doi: 10.1128/jb.164.1.390-396.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Zink R. T., Kemble R. J., Chatterjee A. K. Transposon Tn5 mutagenesis in Erwinia carotovora subsp. carotovora and E. carotovora subsp. atroseptica. J Bacteriol. 1984 Mar;157(3):809–814. doi: 10.1128/jb.157.3.809-814.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. van Gijsegem F. Relationship between the pel genes of the pelADE cluster in Erwinia chrysanthemi strain B374. Mol Microbiol. 1989 Oct;3(10):1415–1424. doi: 10.1111/j.1365-2958.1989.tb00124.x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES