Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1991 Mar;173(5):1810–1812. doi: 10.1128/jb.173.5.1810-1812.1991

UGA can be decoded as tryptophan at low efficiency in Bacillus subtilis.

P S Lovett 1, N P Ambulos Jr 1, W Mulbry 1, N Noguchi 1, E J Rogers 1
PMCID: PMC207334  PMID: 1900283

Abstract

Replacement of cat-86 codon 7 or 144 with the UGA codon permitted the gene to confer chloramphenicol resistance in wild-type Bacillus subtilis. UAA replacements of the same codons resulted in a chloramphenicol-sensitive phenotype in wild-type B. subtilis and a chloramphenicol-resistant phenotype in suppressor-positive strains. N-terminal sequencing showed that UGA at codon 7 was decoded as tryptophan in wild-type cells, at an efficiency of about 6%.

Full text

PDF
1810

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bossi L., Ruth J. R. The influence of codon context on genetic code translation. Nature. 1980 Jul 10;286(5769):123–127. doi: 10.1038/286123a0. [DOI] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  3. Costanzo M., Brzustowicz L., Hannett N., Pero J. Bacteriophage SPO1 genes 33 and 34. Location and primary structure of genes encoding regulatory subunits of Bacillus subtilis RNA polymerase. J Mol Biol. 1984 Dec 15;180(3):533–547. doi: 10.1016/0022-2836(84)90026-3. [DOI] [PubMed] [Google Scholar]
  4. Georgopoulos C. P. Suppressor system in Bacillus subtilis 168. J Bacteriol. 1969 Mar;97(3):1397–1402. doi: 10.1128/jb.97.3.1397-1402.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Götz F., Ahrné S., Lindberg M. Plasmid transfer and genetic recombination by protoplast fusion in staphylococci. J Bacteriol. 1981 Jan;145(1):74–81. doi: 10.1128/jb.145.1.74-81.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hirsh D. Tryptophan transfer RNA as the UGA suppressor. J Mol Biol. 1971 Jun 14;58(2):439–458. doi: 10.1016/0022-2836(71)90362-7. [DOI] [PubMed] [Google Scholar]
  7. Laredo J., Wolff V. L., Lovett P. S. Chloramphenicol acetyltransferase specified by cat-86: relationship between the gene and the protein. Gene. 1988 Dec 15;73(1):209–214. doi: 10.1016/0378-1119(88)90327-7. [DOI] [PubMed] [Google Scholar]
  8. Lipsky R. H., Rosenthal R., Zahler S. A. Defective specialized SP beta transducing bacteriophages of Bacillus subtilis that carry the sup-3 or sup-44 gene. J Bacteriol. 1981 Dec;148(3):1012–1015. doi: 10.1128/jb.148.3.1012-1015.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lovett P. S., Keggins K. M. Bacillus subtilis as a host for molecular cloning. Methods Enzymol. 1979;68:342–357. doi: 10.1016/0076-6879(79)68025-4. [DOI] [PubMed] [Google Scholar]
  10. McKenzie T., Hoshino T., Tanaka T., Sueoka N. Correction. A revision of the nucleotide sequence and functional map of pUB110. Plasmid. 1987 Jan;17(1):83–85. doi: 10.1016/0147-619x(87)90015-1. [DOI] [PubMed] [Google Scholar]
  11. Mellado R. P., Vinuela E., Salas M. Isolation of a strong suppressor of nonsense mutations in Bacillus subtilis. Eur J Biochem. 1976 May 17;65(1):213–223. doi: 10.1111/j.1432-1033.1976.tb10408.x. [DOI] [PubMed] [Google Scholar]
  12. Mulbry W. W., Ambulos N. P., Jr, Lovett P. S. Bacillus subtilis mutant allele sup-3 causes lysine insertion at ochre codons: use of sup-3 in studies of translational attenuation. J Bacteriol. 1989 Oct;171(10):5322–5324. doi: 10.1128/jb.171.10.5322-5324.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Murgola E. J. Restricted wobble in UGA codon recognition by glycine tRNA suppressors of UGG. J Mol Biol. 1981 Jun 15;149(1):1–13. doi: 10.1016/0022-2836(81)90257-6. [DOI] [PubMed] [Google Scholar]
  14. Shaw W. V. Chloramphenicol acetyltransferase from chloramphenicol-resistant bacteria. Methods Enzymol. 1975;43:737–755. doi: 10.1016/0076-6879(75)43141-x. [DOI] [PubMed] [Google Scholar]
  15. Taylor J. W., Ott J., Eckstein F. The rapid generation of oligonucleotide-directed mutations at high frequency using phosphorothioate-modified DNA. Nucleic Acids Res. 1985 Dec 20;13(24):8765–8785. doi: 10.1093/nar/13.24.8765. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES