Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1992 Nov;174(21):6743–6751. doi: 10.1128/jb.174.21.6743-6751.1992

Catabolite repression of the H(+)-translocating ATPase in Vibrio parahaemolyticus.

Y Sakai-Tomita 1, C Moritani 1, H Kanazawa 1, M Tsuda 1, T Tsuchiya 1
PMCID: PMC207349  PMID: 1328162

Abstract

Cells of Vibrio parahaemolyticus grown in the presence of glucose showed reduced (by about 40%) oxidative phosphorylation. With this observation as a basis, we examined the effect of glucose on the level of H(+)-translocating ATPase. The addition of glucose to the growth medium reduced the specific activity and the amount of the H(+)-translocating ATPase in membrane vesicles of V. parahaemolyticus. These reductions were reversed by adding cyclic AMP (cAMP) to the growth medium. We cloned some parts of the unc genes encoding subunits of the H(+)-translocating ATPase of V. parahaemolyticus by means of the polymerase chain reaction. Using an amplified DNA fragment, we carried out Northern (RNA) blot analysis and found that glucose reduced the mRNA level of the H(+)-translocating ATPase gene by about 40% and that cAMP restored it. We determined the DNA sequence of the unc promoter region of V. parahaemolyticus and found a consensus sequence for the cAMP receptor protein-cAMP-binding site. Such a sequence was also found in the promoter region of the unc operon of Vibrio alginolyticus but not in its counterpart in Escherichia coli. We observed a similar reduction in the level of ATPase due to glucose in V. alginolyticus. In E. coli, however, reductions in the ATPase and the unc mRNA levels were not observed. Thus, the unc operon is controlled by cAMP-regulated catabolite repression in V. parahaemolyticus and V. alginolyticus but not in E. coli. Catabolite repression of the unc operon in V. parahaemolyticus is not severe.

Full text

PDF
6743

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aiba H., Adhya S., de Crombrugghe B. Evidence for two functional gal promoters in intact Escherichia coli cells. J Biol Chem. 1981 Nov 25;256(22):11905–11910. [PubMed] [Google Scholar]
  2. BERNS K. I., THOMAS C. A., Jr ISOLATION OF HIGH MOLECULAR WEIGHT DNA FROM HEMOPHILUS INFLUENZAE. J Mol Biol. 1965 Mar;11:476–490. doi: 10.1016/s0022-2836(65)80004-3. [DOI] [PubMed] [Google Scholar]
  3. Cain B. D., Simoni R. D. Impaired proton conductivity resulting from mutations in the a subunit of F1F0 ATPase in Escherichia coli. J Biol Chem. 1986 Aug 5;261(22):10043–10050. [PubMed] [Google Scholar]
  4. Dibrov P. A., Lazarova R. L., Skulachev V. P., Verkhovskaya M. L. The sodium cycle. II. Na+-coupled oxidative phosphorylation in Vibrio alginolyticus cells. Biochim Biophys Acta. 1986 Jul 23;850(3):458–465. doi: 10.1016/0005-2728(86)90114-3. [DOI] [PubMed] [Google Scholar]
  5. Dmitriev OYu, Grinkevich V. A., Skulachev V. P. The F1-ATPase of Vibrio alginolyticus. Purification and N-terminal sequence of major subunits. FEBS Lett. 1989 Dec 4;258(2):219–222. doi: 10.1016/0014-5793(89)81657-6. [DOI] [PubMed] [Google Scholar]
  6. Dunlap P. V. Regulation of luminescence by cyclic AMP in cya-like and crp-like mutants of Vibrio fischeri. J Bacteriol. 1989 Feb;171(2):1199–1202. doi: 10.1128/jb.171.2.1199-1202.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Engebrecht J., Silverman M. Nucleotide sequence of the regulatory locus controlling expression of bacterial genes for bioluminescence. Nucleic Acids Res. 1987 Dec 23;15(24):10455–10467. doi: 10.1093/nar/15.24.10455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Futai M., Kanazawa H. Structure and function of proton-translocating adenosine triphosphatase (F0F1): biochemical and molecular biological approaches. Microbiol Rev. 1983 Sep;47(3):285–312. doi: 10.1128/mr.47.3.285-312.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Futai M., Noumi T., Maeda M. ATP synthase (H+-ATPase): results by combined biochemical and molecular biological approaches. Annu Rev Biochem. 1989;58:111–136. doi: 10.1146/annurev.bi.58.070189.000551. [DOI] [PubMed] [Google Scholar]
  10. Gay N. J., Walker J. E. The atp operon: nucleotide sequence of the promoter and the genes for the membrane proteins, and the delta subunit of Escherichia coli ATP-synthase. Nucleic Acids Res. 1981 Aug 25;9(16):3919–3926. doi: 10.1093/nar/9.16.3919. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gay N. J., Walker J. E. The atp operon: nucleotide sequence of the region encoding the alpha-subunit of Escherichia coli ATP-synthase. Nucleic Acids Res. 1981 May 11;9(9):2187–2194. doi: 10.1093/nar/9.9.2187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gunsalus R. P., Brusilow W. S., Simoni R. D. Gene order and gene-polypeptide relationships of the proton-translocating ATPase operon (unc) of Escherichia coli. Proc Natl Acad Sci U S A. 1982 Jan;79(2):320–324. doi: 10.1073/pnas.79.2.320. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Jones H. M., Brajkovich C. M., Gunsalus R. P. In vivo 5' terminus and length of the mRNA for the proton-translocating ATPase (unc) operon of Escherichia coli. J Bacteriol. 1983 Sep;155(3):1279–1287. doi: 10.1128/jb.155.3.1279-1287.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kagawa Y., Ohta S. Regulation of mitochondrial ATP synthesis in mammalian cells by transcriptional control. Int J Biochem. 1990;22(3):219–229. doi: 10.1016/0020-711x(90)90333-x. [DOI] [PubMed] [Google Scholar]
  15. Kakinuma Y., Igarashi K. Sodium-translocating adenosine triphosphatase in Streptococcus faecalis. J Bioenerg Biomembr. 1989 Dec;21(6):679–692. doi: 10.1007/BF00762686. [DOI] [PubMed] [Google Scholar]
  16. Kanazawa H., Kayano T., Kiyasu T., Futai M. Nucleotide sequence of the genes for beta and epsilon subunits of proton-translocating ATPase from Escherichia coli. Biochem Biophys Res Commun. 1982 Apr 29;105(4):1257–1264. doi: 10.1016/0006-291x(82)90922-6. [DOI] [PubMed] [Google Scholar]
  17. Kinoshita N., Unemoto T., Kobayashi H. Sodium-stimulated ATPase in Streptococcus faecalis. J Bacteriol. 1984 Jun;158(3):844–848. doi: 10.1128/jb.158.3.844-848.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kobayashi H., Suzuki T., Kinoshita N., Unemoto T. Amplification of the Streptococcus faecalis proton-translocating ATPase by a decrease in cytoplasmic pH. J Bacteriol. 1984 Jun;158(3):1157–1160. doi: 10.1128/jb.158.3.1157-1160.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kolb A., Spassky A., Chapon C., Blazy B., Buc H. On the different binding affinities of CRP at the lac, gal and malT promoter regions. Nucleic Acids Res. 1983 Nov 25;11(22):7833–7852. doi: 10.1093/nar/11.22.7833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Krumholz L. R., Esser U., Simoni R. D. Characterization of the H(+)-pumping F1F0 ATPase of Vibrio alginolyticus. J Bacteriol. 1990 Dec;172(12):6809–6817. doi: 10.1128/jb.172.12.6809-6817.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Krumholz L. R., Esser U., Simoni R. D. Nucleotide sequence of the unc operon of Vibrio alginolyticus. Nucleic Acids Res. 1989 Oct 11;17(19):7993–7994. doi: 10.1093/nar/17.19.7993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. LENNOX E. S. Transduction of linked genetic characters of the host by bacteriophage P1. Virology. 1955 Jul;1(2):190–206. doi: 10.1016/0042-6822(55)90016-7. [DOI] [PubMed] [Google Scholar]
  23. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  24. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  25. Miki J., Fujiwara K., Tsuda M., Tsuchiya T., Kanazawa H. Suppression mutations in the defective beta subunit of F1-ATPase from Escherichia coli. J Biol Chem. 1990 Dec 15;265(35):21567–21572. [PubMed] [Google Scholar]
  26. Sakai-Tomita Y., Tsuda M., Tsuchiya T. Na(+)-coupled ATP synthesis in a mutant of Vibrio parahaemolyticus lacking H(+)-translocating ATPase activity. Biochem Biophys Res Commun. 1991 Aug 30;179(1):224–228. doi: 10.1016/0006-291x(91)91358-j. [DOI] [PubMed] [Google Scholar]
  27. Sakai Y., Moritani C., Tsuda M., Tsuchiya T. A respiratory-driven and an artificially driven ATP synthesis in mutants of Vibrio parahaemolyticus lacking H+-translocating ATPase. Biochim Biophys Acta. 1989 Mar 23;973(3):450–456. doi: 10.1016/s0005-2728(89)80387-1. [DOI] [PubMed] [Google Scholar]
  28. Sakai Y., Sumida Y., Tsuda M., Shinoda S., Tsuchiya T. Properties of adenosine triphosphate-hydrolyzing enzymes in membrane vesicles of Vibrio parahaemolyticus. Chem Pharm Bull (Tokyo) 1987 Sep;35(9):3771–3776. doi: 10.1248/cpb.35.3771. [DOI] [PubMed] [Google Scholar]
  29. Sakai Y., Tamao Y., Shimamoto T., Hama H., Tsuda M., Tsuchiya T. Cloning and expression of the 5'-nucleotidase gene of Vibrio parahaemolyticus in Escherichia coli and overproduction of the enzyme. J Biochem. 1989 May;105(5):841–846. doi: 10.1093/oxfordjournals.jbchem.a122755. [DOI] [PubMed] [Google Scholar]
  30. Sakai Y., Tsuda M., Tsuchiya T. Na+/adenosine co-transport in Vibrio parahaemolyticus. Biochim Biophys Acta. 1987 Aug 12;893(1):43–48. doi: 10.1016/0005-2728(87)90146-0. [DOI] [PubMed] [Google Scholar]
  31. Saraste M., Gay N. J., Eberle A., Runswick M. J., Walker J. E. The atp operon: nucleotide sequence of the genes for the gamma, beta, and epsilon subunits of Escherichia coli ATP synthase. Nucleic Acids Res. 1981 Oct 24;9(20):5287–5296. doi: 10.1093/nar/9.20.5287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Szekely E., Montgomery D. L. Glucose represses transcription of Saccharomyces cerevisiae nuclear genes that encode mitochondrial components. Mol Cell Biol. 1984 May;4(5):939–946. doi: 10.1128/mcb.4.5.939. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Tamao Y., Noguchi K., Sakai-Tomita Y., Hama H., Shimamoto T., Kanazawa H., Tsuda M., Tsuchiya T. Sequence analysis of nutA gene encoding membrane-bound Cl(-)-dependent 5'-nucleotidase of Vibrio parahaemolyticus. J Biochem. 1991 Jan;109(1):24–29. doi: 10.1093/oxfordjournals.jbchem.a123345. [DOI] [PubMed] [Google Scholar]
  34. Tsuchiya T., Shinoda S. Respiration-driven Na+ pump and Na+ circulation in Vibrio parahaemolyticus. J Bacteriol. 1985 May;162(2):794–798. doi: 10.1128/jb.162.2.794-798.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES